首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α1,α2,α3,α5一α4的秩为4.
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α1,α2,α3,α5一α4的秩为4.
admin
2020-09-25
42
问题
已知向量组(I)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
由R(I)=R(Ⅱ)=3可知,α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,从而可得α
4
可由α
1
,α
2
,α
3
唯一线性表示,从而有一组数l
1
,l
2
,l
3
,使α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
.若有关系式x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
(α
5
一α
4
)=0,将α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
代入可得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
(α
5
—l
1
α
1
—l
2
α
2
一l
3
α
3
)=0, 整理可得(x
1
一l
1
x
4
)α
1
+(x
2
—l
2
x
4
)α
2
+(x
3
一l
3
x
4
)α
3
+x
4
α
5
=0. 又由于R(Ⅲ)=4,则α
1
,α
2
,α
3
,α
5
线性无关,所以有齐次线性方程组: [*] 解得:x
1
=x
2
=x
3
=x
4
=0.从而向量组α
1
,α
2
,α
3
,α
5
一α
4
线性无关. 所以R(α
1
,α
2
,α
3
,α
5
一α
4
)=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/kJx4777K
0
考研数学三
相关试题推荐
曲线y=x2与直线y=x+2所围成的平面图形面积为________.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
设f(x)的一个原函数为=______.
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
计算二重积分其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,…,αm与β1,β2,…,βS为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βS)一r,则().
若向量组α,β,γ线性无关;α,β,δ线性相关,则
求极限=_______.
随机试题
DNA分子上能被RNA聚合酶特异结合的部位叫作()
口有涩味如食生柿子的感觉属于
半夏除燥湿化痰,降逆止呕外,还有的功效是
根据商品房建设的需要,可以依照法律程序提前收回已出让的土地使用权,但在收回时应根据土地使用者利用土地的实际情况和土地的剩余年限给予适当赔偿。()
在工程经济分析中,以投资收益率指标作为主要决策依据,其可靠性较差的原因在于()。
根据《会计档案管理办法》的规定,会计档案的保管期限为永久定期两类。会计档案的定期保管期限最短为()
对于《普通高中语文课程标准(实验)》中提出的“表达与交流”方面的实施建议,下列理解不正确的是()。
为了解幼儿同伴交往特点,研究者深入幼儿所在的班级,详细记录其交往过程的语言和作等。这一研究方法属于()。
科学的可靠性还源于科学界具有公认的评价准则,所以能对理论取得一致意见,因此在比较成熟的科学领域,一个问题无论问哪一个科学家,都可以得到大致相同的答案。哲学、伦理学等学科没有公认的评价准则,同一个问题问不同的哲学家或伦理学家可能得到完全相反的结果,令人无所适
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)