首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α1,α2,α3,α5一α4的秩为4.
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α1,α2,α3,α5一α4的秩为4.
admin
2020-09-25
39
问题
已知向量组(I)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
由R(I)=R(Ⅱ)=3可知,α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,从而可得α
4
可由α
1
,α
2
,α
3
唯一线性表示,从而有一组数l
1
,l
2
,l
3
,使α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
.若有关系式x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
(α
5
一α
4
)=0,将α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
代入可得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
(α
5
—l
1
α
1
—l
2
α
2
一l
3
α
3
)=0, 整理可得(x
1
一l
1
x
4
)α
1
+(x
2
—l
2
x
4
)α
2
+(x
3
一l
3
x
4
)α
3
+x
4
α
5
=0. 又由于R(Ⅲ)=4,则α
1
,α
2
,α
3
,α
5
线性无关,所以有齐次线性方程组: [*] 解得:x
1
=x
2
=x
3
=x
4
=0.从而向量组α
1
,α
2
,α
3
,α
5
一α
4
线性无关. 所以R(α
1
,α
2
,α
3
,α
5
一α
4
)=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/kJx4777K
0
考研数学三
相关试题推荐
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
已知,A*是A的伴随矩阵,那么A*的特征值是________。
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分xydσ=__________。
(15年)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.(Ⅰ)求Y的概率分布;(Ⅱ)求EY.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
(87年)求矩阵A=的实特征值及对应的特征向量.
[2011年]曲线tan(x+y+π/4)=ey在点(0,0)处的切线方程为___________.
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1—2α2+α3,(α1-α3),α1+3α2—4α3是导出组Ax=0的解向量的个数为()
函数,则极限()
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
随机试题
A、Hospitalteachers.B、Schoolmates.C、Parents.D、Schoolteachers.B从“Childrentendtorelyonconcernedschoolfriendstokeep
症见吐血、便血、皮肤出现紫斑点,伴有神疲乏力,心悸气短,属于
我国规定的围生期为
A.阿昔洛韦B.更昔洛韦C.喷昔洛韦D.奥司他韦E.伐昔洛韦属于更昔洛韦的生物电子等排体衍生物的是()。
合同对第三人的效力表现在()
根据《陕西省人民政府关于规范城镇社区专职工作人员和社区居民委员会成员待遇的意见》,对于城镇社区专职工作人员年度考核不合格者下一年度在报酬待遇方面的变化是()。
有人把教育隐喻为“塑造”,称教师是“人类灵魂的工程师”,这种观点在人的发展影响因素问题上倾向于()。(2016年)
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为()·
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为若α1,α2,…,αs线性无关.证明:r(β1,β2,…,βt)=r(C).
A------TakeCareNottoLeaveThingsBehindJ------ShootingProhibitedB------Ladies’RoomK------DoNotLitterC------HandsOf
最新回复
(
0
)