首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
admin
2019-03-19
88
问题
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:
(Ⅰ)0≤∫
a
χ
g(t)dt≤(χ-a),χ∈[a,b]
(Ⅱ)
f(χ)dχ≤∫
a
b
f(χ)g(χ)dχ.
选项
答案
(Ⅰ)由0≤g(χ)≤1得 0≤∫
0
χ
g(t)dt≤∫
0
χ
1dt(χ-a) χ∈[a,b] (Ⅱ)令F(u)=∫f(χ)g(χ)dχ-[*]f(χ)dχ 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F′(u)=f(u)g(u)-f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)-f(a+∫
a
u
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
χ
g(t)dt≤(χ-a)知,a≤a+∫
a
χ
g(t)dt≤χ,即 a≤a+∫
a
u
g(t)dt≤u 又f(χ)单调增加,则f(u)≥f(a+∫
a
u
g(t)dt),因此,F′(u)≥0,F(b)≥0. 故[*]f(χ)dχ≤∫
a
b
(χ)g(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ueP4777K
0
考研数学三
相关试题推荐
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
设B是三阶非零矩阵,且AB=0,则a=________。
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设奇函数f(x)在[—1,1]上具有二阶导数,且f(1)=1,证明:(Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(—1,1),使得f"(η)+f’(η)=1。
下列条件不能保证n阶实对称阵A正定的是()
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则dxdy等于().
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为______.
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
设则f′(x)=____________.
随机试题
寄生虫感染的炎症病变内的主要细胞
牛带绦虫感染人体的阶段是
某县人民法院审理一民事案件过程中,要求县移动通信营业部提供某通信用户的电话详单。根据我国宪法的规定,下列说法何者为正确?
水泥抗折强度试验,试件折断的荷载为2.08kN,计算其抗折强度应为3.25MPa。()
先进型的智能化住宅实现住宅小区开发建设应用HI-CIMS技术。()
[2013年第22题]两栋多层建筑物之间在第四层和第五层设两层架空走廊,其中第五层走廊有围护结构,第四层走廊无围护结构;两层走廊层高均为3.9m,结构底板面积均为30m2,则两层走廊的建筑面积应为:
隧道的组成部分包括()。
(2016年卷二第1题)根据民法通则及相关规定,下列哪项属于民法调整的范围?
下列关于对“冬天麦盖三层被,来年枕着馒头睡”的理解,错误的是()。
假设某计算机采用小端方式存储,按字节编址。一维数组a有100个元素,其类型为float,存放在地址COO01000H开始的连续区域中,则最后一个数组元素的最高有效位(MSB)所在的地址应为()。
最新回复
(
0
)