首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
admin
2019-03-19
83
问题
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:
(Ⅰ)0≤∫
a
χ
g(t)dt≤(χ-a),χ∈[a,b]
(Ⅱ)
f(χ)dχ≤∫
a
b
f(χ)g(χ)dχ.
选项
答案
(Ⅰ)由0≤g(χ)≤1得 0≤∫
0
χ
g(t)dt≤∫
0
χ
1dt(χ-a) χ∈[a,b] (Ⅱ)令F(u)=∫f(χ)g(χ)dχ-[*]f(χ)dχ 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F′(u)=f(u)g(u)-f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)-f(a+∫
a
u
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
χ
g(t)dt≤(χ-a)知,a≤a+∫
a
χ
g(t)dt≤χ,即 a≤a+∫
a
u
g(t)dt≤u 又f(χ)单调增加,则f(u)≥f(a+∫
a
u
g(t)dt),因此,F′(u)≥0,F(b)≥0. 故[*]f(χ)dχ≤∫
a
b
(χ)g(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ueP4777K
0
考研数学三
相关试题推荐
求二重积分max(xy,1)dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}。
设z=f(x2+y2,xy,x),其中f(u,v,w)二阶连续可偏导,求.
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
求微分方程y’’=y’2满足初始条件y(0)=y’(0)=1的特解.
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
设数列{xn}满足:x1>0,(n=1,2,…).证明:{xn}收敛,并求
设A=,而n≥2为整数,则An一2An-1=__________。
若四阶矩阵A与B相似,矩阵A的特征值为,则行列式|B-1一E|=__________。
设则A与B().
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Ax=b的一个解.试证:方程组Ax=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Ax=b的任一解.
随机试题
胰的描述,不正确的是
习惯性流产定义为
检查:双眼睑结膜高度充血,耳前淋巴结肿大,结膜分泌物涂片见白细胞内大量革兰染色阴性双球菌。患者最可能诊断为
A.延髓下部的薄束核B.丘脑外侧核C.延髓下部的楔束核D.脊髓后角细胞E.后根神经节
A.舌尖B.舌中C.舌边D.舌底E.舌根心在舌分属部位是
开放性气胸患者呼吸困难最主要的急救措施是
关于仲裁裁决的撤销,根据我国现行法律,下列哪一选项是正确的?()
背景资料:某公司承建一座市政桥梁工程,桥梁上部结构为9孔30m后张法预应力混凝土T梁,桥宽横断面布置T梁12片,T梁支座中心线距梁端600mm,T梁横截面(单位:mm)如下图所示。项目部进场后,拟在桥位线路上现有城市次干道旁租地建设T
某甲投保了家庭财产保险基本险,保险金额为20万元,其中房屋及室内装潢的保险金额为10万元。保险合同约定出险时将按照保险财产的实际损失及当时的保障比例进行赔偿。某甲的房屋在保险期限内发生火灾,造成房屋及其室内装潢部分损失19000元。其中出险时房屋及其室内装
每个人都有自己的乐趣。有一位大师生前曾说过:“在工作和基本生活之外,我唯一做的事情就是看书。”可见()。
最新回复
(
0
)