首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明: Ⅰ)存在η∈(a,b),使得f(η)=g(η); Ⅱ)存在ξ∈(a,b),使得f’’(ξ)
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明: Ⅰ)存在η∈(a,b),使得f(η)=g(η); Ⅱ)存在ξ∈(a,b),使得f’’(ξ)
admin
2018-07-24
47
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:
Ⅰ)存在η∈(a,b),使得f(η)=g(η);
Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
选项
答案
令φ(x)=f(x)一g(x),以下分两种情况讨论: 1)若f(x)和g(x)在(a,b)内的同一点处c∈(a,b)取到其最大值,则φ(c)=f(c)一g(c)=0,又φ(a)=φ(b)=0,由罗尔定理知 [*]ξ
1
∈(a,c),使φ’(ξ
1
)=0;[*]ξ
2
∈(c,b),使φ’(ξ
2
)=0 对φ’(x)在[ξ
1
,ξ
2
]上用罗尔定理得,[*]ξ∈(ξ
1
,ξ
2
),使φ’’(ξ)=0 2)若f(x)和g(x)在(a,b)内不在同一点处取到其最大值,不妨设f(x)和g(x)分别在x
1
和x
2
(x
1
<x
2
)取到其在(a,b)内的最大值,则 φ(x
1
)=f(x
1
)一g(x
1
)>0, φ(x
2
)=f(x
2
)一g(x
2
)<0 由连续函数的介值定理知,[*]c∈(x
1
,x
2
),使φ(c)=0.以下证明与1)相同.
解析
转载请注明原文地址:https://kaotiyun.com/show/kLW4777K
0
考研数学三
相关试题推荐
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
求下列不定积分:
求幂级数的收敛域.
设f(x)二阶连续可导,且=________。
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
判断下列结论是否正确,并证明你的判断.(Ⅰ)设当n>N时xn<yn,已知极限均存在,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限,则f(x)在(a,b)有界;(Ⅲ)若=∞.则存在δ>0.使得当0<|x-a|<δ时有界.
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
设f(x)是连续函数.求初值问题的解,其中a>0;
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A—E恒可逆。上述命题中,正确的个数为()
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
随机试题
总体规划是国民经济和社会发展的()的规划。
酸碱质子理论认为,H2O既是一种酸,又是一种碱。()
预防维生素D缺乏最重要的方法是
A.个体行为干预B.群体行为干预C.行为指导处方D.健康促进行为E.心理防御机制专题讲座属于
粒系细胞的免疫标志是
患者男性,35岁,因惊恐障碍长期口服阿米替林,175mg,1次/日。因家中变故,惊恐发作加重,每周发作4~5次,前来就诊。诊断:焦虑症。医嘱:治疗用药的用药方法:地西泮10mg,2次/日;帕罗西汀20mg,口服,1次/日;阿米替林150nlg,
关于现浇混凝土工程模板支撑系统立柱对接接头的说法,正确的是()。
学生心理发展的基本特征包括()
下面是8086/8088微处理器有关操作的描述: ①计算有效地址 ②分析指令,产生控制信号 ③计算物理地址,传送执行过程中需要的操作数或运行结果 ④预取指令至指令队列缓冲器 其中由总线接口部件BIU完成的操作是(
ReadthefollowingpassagecarefullyandthenwriteasummaryofitinEnglishinabout150words.Manyoftoday’syoungpeo
最新回复
(
0
)