(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明: Ⅰ)存在η∈(a,b),使得f(η)=g(η); Ⅱ)存在ξ∈(a,b),使得f’’(ξ)

admin2018-07-24  34

问题 (2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:
   Ⅰ)存在η∈(a,b),使得f(η)=g(η);
   Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).

选项

答案令φ(x)=f(x)一g(x),以下分两种情况讨论: 1)若f(x)和g(x)在(a,b)内的同一点处c∈(a,b)取到其最大值,则φ(c)=f(c)一g(c)=0,又φ(a)=φ(b)=0,由罗尔定理知 [*]ξ1∈(a,c),使φ’(ξ1)=0;[*]ξ2∈(c,b),使φ’(ξ2)=0 对φ’(x)在[ξ1,ξ2]上用罗尔定理得,[*]ξ∈(ξ1,ξ2),使φ’’(ξ)=0 2)若f(x)和g(x)在(a,b)内不在同一点处取到其最大值,不妨设f(x)和g(x)分别在x1和x2(x1<x2)取到其在(a,b)内的最大值,则 φ(x1)=f(x1)一g(x1)>0, φ(x2)=f(x2)一g(x2)<0 由连续函数的介值定理知,[*]c∈(x1,x2),使φ(c)=0.以下证明与1)相同.

解析
转载请注明原文地址:https://kaotiyun.com/show/kLW4777K
0

最新回复(0)