首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0). 当l与直线y=ax所围成平面图形的面积为8/3时,确定a的值.
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0). 当l与直线y=ax所围成平面图形的面积为8/3时,确定a的值.
admin
2019-03-30
95
问题
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).
当l与直线y=ax所围成平面图形的面积为8/3时,确定a的值.
选项
答案
由ax
2
-ax=ax易求得y=ax
2
-ax与y=ax的交点为x
1
=0,x
2
=2,从而y
1
=0,y
2
=2a即交点为(0,0),(2,2a)(见图1.6.4.1).又由题设有 [*] 故a=2. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FaP4777K
0
考研数学三
相关试题推荐
微分方程y"+2y’+5y=0的通解为________。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
已知方程组有解,证明:方程组无解。
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
设A是m×n矩阵,E是n阶单位阵,矩阵B=一aE+ATA是正定阵,则a的取值范围是________。
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
微分方程xy’+y=0满足初始条件y(1)=2的特解为________。
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
随机试题
Excel2010中,当公式引用的单元格的数据修改后,公式的计算结果会自动更新。
某商场使用了由东方电梯厂生产、亚林公司销售的自动扶梯。某日营业时间,自动扶梯突然逆向运行,造成顾客王某、栗某和商场职工薛某受伤,其中栗某受重伤,经治疗半身瘫痪,数次自杀未遂。现查明,该型号自动扶梯在全国已多次发生相同问题,但电梯厂均通过更换零部件、维修进行
简述国际电视的发展情况及特点。
双侧瞳孔散大见于
投标文件一般应包括的内容有()。
2×13年1月1日,甲公司以银行存款750万元取得乙公司20%的股权,至此共计持有乙公司40%的股权,仍对乙公司具有重大影响。甲公司原持有乙公司长期股权投资的账面价值为900万元(其中,投资成本700万元,损益调整100万元,其他综合收益80万元,其他权益
德国心理学家邓克尔发现,人看到某一物品有一种常用的功能后,就很难看出其他新功能,进而影响了问题的解决。这一现象称为()。
炎热的夏天,蜻蜓经常贴着水面飞行,尾部不时触到水里,溅起朵朵水花,这就是“蜻蜓点水”,对此正确的解释是()。
下列关于栈的叙述正确的是
Ozoneisaformofoxygen.Itisfoundintheairwebreatheandintheupperatmosphere.NeartheEarth,ozoneintheairisa
最新回复
(
0
)