首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=fn(ξ).
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=fn(ξ).
admin
2021-12-14
7
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得f(c)=
f
n
(ξ).
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξE(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=f(c)/[(c-a
1
)(c-a
2
)…(c-a
n
)], 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ′(ξ
1
(1)
)=φ′(ξ
2
(1)
)=…=φ′(ξ
n
(1)
)=0,即φ′(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*]362(a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kNl4777K
0
考研数学一
相关试题推荐
讨论函数的间断点及其类型.
设矩阵是满秩的,则直线与直线的位置关系是().
设有三个事件A,B,C,其中0<P(B)<1,0<P(C)<1,且事件B与事件C相互独立,证明:
设总体X~N(μ,σ2),X1,X2,…,Xn是一个样本,X,S2分别为样本均值和样本方差,设C1,…,Cn是不全相等的常数,且,求
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设f(x)有二阶连续导数,且f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x).
设函数y=y(x)满足微分方程y“-3y‘+2y=2ex,且其图形在点(0,1)处的切线与曲线y=x2-x+1在该点的切线重合,求y=y(x)的表达式.
设函数f,g均可微,z=f(xy,lnx+g(xy)),则=______________.
设函数求证:函数f(x,y)在点(0,0)处可微.
讨论函数在定义域内的连续性.
随机试题
国防建设的基本依托是()
患者,男,66岁,因胸骨后疼痛2d,出冷汗,皮肤凉1h来院就诊。测BP10.6/6.6kPa(80/50mmHg)。ECG示V1-6,I、aVL导联的ST段明显抬高,并有深而宽的Q波。血清CK-MB峰高出正常的12倍。对该患者最有效的治疗是
申请人自发明或者实用新型在外国第一次提出专利申请之日起______,或者自外观设计在外国第一次提出专利申请之日起______,又在中国就相同主题提出专利申请的,依照该外国同中国签订的协议或者共同参加的国际条约,或者依照相互承认优先权的原则,可以享有优先权
MnO2+HCl=MnCl2+Cl2+H2O将反应配平后,MnCl2的系数为()。
根据《金融机构协助查询、冻结、扣划工作管理规定》,办理协助冻结业务时,金融机构经办人员应当核实的证件和法律文书不包括()。
设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线的斜率为__________.
1938年5、6月间,毛泽东发表《论持久战》的讲演,指出抗日战争是持久的,最后的胜利是中国的,全部问题的根据是()
下面是关于计算机病毒的4条叙述,其中正确的一条是______。
Whichofthefollowingcanbeusedasastativeverb(静态动词)?
TheAncientGreekOlympicsToday’sOlympicGamesarebasedonwhattookplaceatOlympia,inGreece,nearlythreemillennia
最新回复
(
0
)