首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=fn(ξ).
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=fn(ξ).
admin
2021-12-14
8
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得f(c)=
f
n
(ξ).
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξE(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=f(c)/[(c-a
1
)(c-a
2
)…(c-a
n
)], 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ′(ξ
1
(1)
)=φ′(ξ
2
(1)
)=…=φ′(ξ
n
(1)
)=0,即φ′(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*]362(a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kNl4777K
0
考研数学一
相关试题推荐
设数列{xn}满足0<x1<π,xn|1=sinxn(n=1,2,…),证明:存在,并求该极限.
求过点P(2,1,3)且与直线L:垂直相交的直线方程.
曲线Γ:在xOy平面上的投影曲线方程是().
设直线L:及平面π:4x一2y+z一2=0,则直线L().
若函数f(x)满足f"(x)+af’(x)+f(x)=0(a>0),f(0)=m,f’(0)=n,则f(x)dx=_______________
设幂级数anxn,当n>1时,an-2=n(n-1)an,且a0=4,a1=1.(1)求级数anxn的和函数S(x);(2)求S(x)的极值.
所求平面π过直线L1,因而过L1上的点(1,2,3);π过L1平行于L2,于是π平行于不共线的向量L1=(1,0,-1),L2=(2,1,1)(分别是直线L1与L2的方向向量).[*]
设g(x)在x=0处二阶可导,且g(0)=g’(0)=0,并设则f(x)在x=0处()
设∑是以L为边界的光滑曲面,试求可微函数φ(x),使曲面积分与曲面∑的形状无关.
若函数其中f是可微函数,且则函数G(x,y)=().
随机试题
背景资料: 承包人承担某堤防工程,工程项目的内容为堤段Ⅰ(土石结构)和堤段Ⅱ(混凝土结构),合同双方签订了合同:签约合同价为600万元,合同工期为120d。 合同约定: (1)工程预付款为签约合同的10%;当工程进度款累计达到签约合同价的60%时,从
简述项目管理的过程。
“社会知觉”的概念,最初的提出者是美国心理学家()。
易诱发急性胰腺炎的是()
A.口气臭秽B.口气酸臭C.口气酒臭D.口气腐臭E.口中散发烂苹果气味胃有宿食,可闻到
(2006年)下列哪种平面流动的等势线为一组平行的直线?()
下列内容中,属于单位工程进度计划应包括的有()。
银行业从业人员的下列行为中正确的是()。
为保持银行的清偿能力和流动性,商业银行贷款的期限结构必须与下列哪一项的期限结构匹配?()
设f(x)在区间(0,+∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,+∞)上也严格单调增加.
最新回复
(
0
)