首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
admin
2019-03-14
29
问题
设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,向量β
2
不能由α
1
,α
2
,α
3
线性表示,则必有( )
选项
A、α
1
,α
2
,β
1
线性无关。
B、α
1
,α
2
,β
2
线性无关。
C、α
2
,α
3
,β
1
,β
2
线性相关。
D、α
1
,α
2
,α
3
,β
1
+β
2
线性相关。
答案
B
解析
由α
1
,α
2
,α
3
线性无关,且β
2
不能由α
1
,α
2
,α
3
线性表示知,α
1
,α
2
,α
3
,β
2
线性无关,从而部分组α
1
,α
2
,β
2
线性无关,故B为正确答案。下面证明其他选项的不正确性。
取α
1
=(1,0,0,0)
T
,α
2
=(0,1,0,0)
T
,α
3
=(0,0,1,0)
T
,β
2
=(0,0,0,1)
T
,β
1
=α
1
,知选项A与C错误。
对于选项D,由于α
1
,α
2
,α
3
线性无关,若α
1
,α
2
,α
3
,β
1
+β
2
线性相关,则β
1
+β
2
可由α
1
,α
2
,α
3
线性表示,而β
1
可由α
1
,α
2
,α
3
线性表示,从而β
2
可由α
1
,α
2
,α
3
线性表示,与假设矛盾,从而D错误。故选B。
转载请注明原文地址:https://kaotiyun.com/show/kOj4777K
0
考研数学二
相关试题推荐
A=,已知r(A*)+r(A)=3,求a,b应该满足的关系.
设3阶矩阵A=,A-1XA=XA+2A,求X.
积分∫aa+2πcosχln(2+cosχ)dχ的值
设A是n阶矩阵,Am=0,证明E-A可逆.
如图1—5一1,C1和C2分别是和y=ex的图象,过点(0,1)的曲线C3是一单调增函数的图象。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为S2(y)。如果
设L是一条平面曲线,其上任意一点m(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点试求曲线L的方程;
设区域D={(x,y)|x2+y2≤1,x≥0},计算二重积分
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
设t>0,则当t→0时,f(t)=[1-cos(x2+y2)]dxdy是t的n阶无穷小量,则n为().
随机试题
已经指出,他们的建议在某种程度上是合理的。
与拔除下颌第三磨牙相关的解剖特点是()
图示8岁男童体重与身高的关系,宜绘制
某特种设备检修单位检修一台中型塔吊,根据此次设备检修作业的危险、有害因素辨识结果,除采取清理作业现场、防火、防高空坠落等措施外,还应()
近年来,我国国债持有者结构有很大变化,( )成为新的重要的国债应债主体。
甲、乙均为国有企业,甲向乙购买一批货物,约定采用托收承付验货付款结算方式。2008年3月1日,乙办理完发货手续,发出货物;3月2日,乙到开户行办理托收手续;3月10日,铁路部门向甲发出提货通知;3月14日,甲向开户行表示承付,通知银行付款。则承付期的起算时
简述法学意义上的亲属的特征。
Thehappieryouare,thebetter,right?Notnecessarily.Studiesshowthatthereisadarkersidetofeelinggoodandthatthe【C
下列ServUFTP服务器的选项中,不提供“IP访问选项”的是()。
A、Itisextremelydangeroustoflyinthedark.B、Noiseregulationsrestrictthehoursofairportoperation.C、Someofitsrunwa
最新回复
(
0
)