首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
admin
2017-07-28
82
问题
设a,b,c为实数,求证:曲线y=e
x
与y=ax
2
+bx+c的交点不超过三个.
选项
答案
令f(x)=e
x
一ax
2
一bx—c,那么问题等价于证明f(x)的零点不超过三个.假设结论不正确,则至少有四个点x
1
<x
2
<x
3
<x
4
,使得f(x
i
)=0,i=1,2,3,4. 由于f(x)在[x
1
,x
4
]上可导,由罗尔定理可知f’(x)在(x
1
,x
2
),(x
2
,x
3
),(x
3
,x
4
)内至少各有一个零点ξ
1
,ξ
2
,ξ
3
.又由于f’(x)在[ξ
1
,ξ
3
]上可导,由罗尔定理可知f”(x)在(ξ
1
,ξ
2
),(ξ
2
,ξ
3
)内至少各有一个零点η
1
,η
2
.同样地,由于f”(x)在[η
1
,η
2
]上可导,由罗尔定理可知f”’(x)在(η
1
,η
2
)内至少有一个零点ζ.因此至少存在一点ζ∈(一∞,+∞)使得f”’(ζ)=0,而f”’(x)=e
x
>0(x∈(一∞,+∞)),这就产生了矛盾.故f(x)的零点不超过三个.
解析
转载请注明原文地址:https://kaotiyun.com/show/kOu4777K
0
考研数学一
相关试题推荐
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成.f=y22+2y32,P是三阶正交矩阵,试求常数a、β.
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
设随机变量X的密度函数为φ(x),且φ(-x)=φ(x),F(x)为X的分布函数,则对任意实数a,有().
(2002年试题,六)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)记当ab=cd时,求I的值.
(2005年试题,17)如图1—3—2所示,曲线c的方程为y=f(x),A(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求A的特征值与特征向最;
设f(x,y)在全平面有三阶连续偏导数,并满足试求:
设A,B均是三阶非零矩阵,满足AB=0,其中则()
随机试题
逛商场时,女生一般看到的多是化妆品、包包、衣服等,男生一般看到的是球类、健身器材等,这体现的是知觉的()
【背景资料】A公司中标某城市污水处理厂的中水扩建工程,合同工期10个月,合同价为固定总价,工程主要包括沉淀池和滤池等现浇混凝土水池。拟建水池距现有建(构)筑物最近距离5m,其地下部分最深为3.6m,厂区地下水位在地面下约2.0m。A公司
下列单位中,()不是出版业的组成部分。
防止茶叶陈化变质,应避免存放时间太长,水分含量过高,避免()阳光直射。
分子结构中苷元有羧基,糖为葡萄糖醛酸的三萜皂苷是
对城市近期建设规划的作用,叙述错误的是()
挂失止付是票据丧失后采取的必经措施。( )
Honesty,mymumalwaysusedtotellme,isthebestpolicy.Ofcourse,thisdidn’tincludeherwhenshetoldmethatifIdidn’
Federaleffortstoaidminoritybusinessesbeganinthe1960’swhentheSmallBusinessAdministration(SBA)beganmakingfederal
BackinthecarefreedaysoftheNoughtiesboom,Britain’syoungstersweresweptalongbythebuy-now-pay-latercultureembraced
最新回复
(
0
)