首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是( ).
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是( ).
admin
2013-08-30
100
问题
设三阶矩阵A的特征值为λ
1
=-1,λ
2
=0,λ
3
=1,则下列结论不正确的是( ).
选项
A、矩阵A不可逆
B、矩阵A的迹为零
C、特征值-1,1对应的特征值向量正交
D、方程组AX=0的基础解系含有一个线性无关的解向量
答案
C
解析
由λ
1
=-1,λ
2
=0,λ
3
=1得|A|=0,则r(A)<3,即A不可逆,(A)正确;又λ
1
+λ
2
+λ
3
=tr(A)=0,所以(B)正确;因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,(D)是正确的;(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,选(C).
转载请注明原文地址:https://kaotiyun.com/show/ND54777K
0
考研数学一
相关试题推荐
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则
设二次型f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
设常数1<a<e1/e,x1=a,xn=axn-1(n=2,3,…),证明当n→∞时,数列{xn}极限存在.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下面结论正确的是()
求下列函数的导数:
设平面区域D由直线及两条坐标轴所围成.记则有()
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方程组的通解.
设函数f(x)在区间[0,+∞)上连续可导,f(0)=1,且对任意t>0,曲线y=f(x)与直线x=0,x=t,y=0所围图形的面积与曲线y=f(x)在[0,t]上的一段弧长相等,求f(x).
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x)其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程。
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=(1-cost)dt,则当x→0时,f(x)是g(x)的()。
随机试题
要加大技术研发的投入,通过深化国有企业改革,形成企业自主创新的机制,同时通过落实国家关于鼓励自主创新的各项政策措施,引导企业增加技术开发的投入。只有形成一批具有自主知识产权的核心技术,才能立于不败之地。上述文字阐述的主旨是()。
根据以下资料。回答下列问题。按2004-2009年科技论文平均增长速度,()年以后论文总数将会翻番(结果按四舍五入计)。
患者,男,58岁。颅内压增高,表现为有规律呼吸几次后,突然停止呼吸,间隔几秒钟后又开始呼吸,周而复始,其呼吸类型为
关于生物脱氮除磷的说法,正确的有()。
建设项目可能造成跨行政区域的不良环境影响,有关环境保护部门对该项目的环境影响评价结论有争议的,其环境影响评价文件由()审批。
重大事故应急救援体系应实行分级响应机制,其中一级紧急情况()。
封闭式基金只能采用()分红。
下列关于企业从被投资单位撤回投资时取得资产的企业所得税税务处理的说法,正确的是()。
所谓__________,一般指人们的认识能力,即认识客观事物的基本能力,是认识活动中表现出来的那些稳定的心理特征。
A.肺通气量B.肺泡通气量C.最大通气量D.解剖无效腔气量E.肺泡无效腔气量每分钟吸入肺泡的新鲜空气量是
最新回复
(
0
)