首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)比较∫01|ln t|[ln(1+t)]ndt与∫01t2|ln t|dt(n=1,2,…)的大小,说明理由; (2)记un=∫01|ln t|[ln(1+t)ndt(n=1,2,…),求极限.
(1)比较∫01|ln t|[ln(1+t)]ndt与∫01t2|ln t|dt(n=1,2,…)的大小,说明理由; (2)记un=∫01|ln t|[ln(1+t)ndt(n=1,2,…),求极限.
admin
2014-01-26
100
问题
(1)比较∫
0
1
|ln t|[ln(1+t)]
n
dt与∫
0
1
t
2
|ln t|dt(n=1,2,…)的大小,说明理由;
(2)记u
n
=∫
0
1
|ln t|[ln(1+t)
n
dt(n=1,2,…),求极限
.
选项
答案
(1)当0≤t≤1时,0≤ln(1+t)≤t,故|ln t|[ln(1+t)]
n
≤|ln t|t
n
, 由积分性质得∫
0
1
|ln t|[ln(1+t)]
n
dt≤∫
0
1
t
n
|ln t|dt(n=1,2,…). (2)∫
0
1
t
n
|ln t|dt=-∫
0
1
t
n
.ln tdt=[982*] 于是有[*], 由夹逼定理得[*]。
解析
[分析]x,-t(1)比较被积函数的大小,对(2)用分部积分法计算积分∫
0
1
t
n
|ln t|dt,再用夹逼定理求极限.
[评注] 若一题有多问,一定要充分利用前问提供的信息.
转载请注明原文地址:https://kaotiyun.com/show/kQ34777K
0
考研数学二
相关试题推荐
(2006年)在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(I)求L的方程;(Ⅱ)当L与直线y=ax所围平面图形的面积为时,确定a的值。
(2015年)计算二重积分,其中D={(x,y)|x2+y2≤2,y≥x2}。
(2000年)设A,B是两个随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。
(2011年)求不定积分
[2012年]已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f’(x)+f(x)-2ex.(1)求f(x)的表达式;(2)求曲线的拐点.
一商店经销某种商品,每周的进货量X与顾客对该种商品的需求量Y是两个相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,可以其他商店调剂供应,这时每单位商品的售出获利润为500元.试求此商
(2010年)设f(x)=ln10x,g(x)=x,h(x)=,则当x充分大时有()
计算二重积分|x2+y2-1|dσ,其中D={(x,y)|0≤x≤1,(0≤y≤1}。
下列反常积分收敛的是()。
设y=y(x)是二阶常系数微分方程y”+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,求函数[ln(1+x2)]/y(x)的极限.
随机试题
下列实验室指标中,哪项对重型肝炎的诊断意义最小
劳务分包合同中。约定不同工种劳务的计时单价,其劳务报酬应()。
()都属于启发式策略。
一项最新研究结果表明:高校毕业生仅靠高成绩已很难获得高薪。在接受调查的6059位应届毕业生中,成绩在班级排名前20%的毕业生月平均工资为2027元,反而低于其他毕业生10%。以下哪项如果为真。最能削弱上述结论?
比较同一团体不同属性特质观测值的离散程度,恰当的统计指标是()
关于心理测量中的行为样本,错误的说法是
对“无所为而为”分析正确的一项是:下面是对本文的注释和分析,有一项是不正确的,请指出:
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
事务处理系统运行时,系统的吞吐率指标(每秒处理的事务数)会随系统负荷(系统中待处理的事务数量)大小而变化。当系统的负荷从0开始逐步增大时,系统吞吐率的变化一般将先后经历如下三个阶段:(62)。
Theoutbreakofsevereacuterespiratorysyndrome(SARS,非典),whichhasnoknowncurefor【C1】______afflictedbyit,hasbrough
最新回复
(
0
)