首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β1,…,βn],且r(α1,α2,…,αn,α,β1,β2,…,βn,β)=r,则 ( )
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β1,…,βn],且r(α1,α2,…,αn,α,β1,β2,…,βn,β)=r,则 ( )
admin
2018-09-20
40
问题
已知r(A)=r
1
,且方程组AX=α有解,r(B)=r
2
,且BY=β无解,设A=[α
1
,α
2
,…,α
n
],B=[β
1
,β
1
,…,β
n
],且r(α
1
,α
2
,…,α
n
,α,β
1
,β
2
,…,β
n
,β)=r,则 ( )
选项
A、r=r
1
+r
2
B、r>r
1
+r
2
C、r=r
1
+r
2
+1
D、r≤r
1
+r
2
+1
答案
D
解析
由题设有
r(α
1
,α
2
,…,α
n
,α)=r
1
,r(β
1
,β
2
,…,β
n
,β)=r
2
+1,
故 r=r(α
1
,α
2
,…,α
n
,α,β
1
,β
2
,…,β
n
,β)≤r
1
+r
2
+1.
转载请注明原文地址:https://kaotiyun.com/show/kRW4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2;总成本函数C=35+40(Q1+Q2).试问:厂家如何确定两个市场的售价,才能使其获得的总
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)求(U,V)的概率分布;(Ⅱ)求U和V的相关系数ρ.
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z).
随机试题
Theexperimentwas______beingafailure;itwasagreatsuccess.
怀疑霍乱弧菌感染的粪便应该接种于何种培养基中增菌
红光中学与周到服装厂签订一份合同。由周到服装厂为红光中学加工1000套初一学生校服。因材料提供、式样更改、服装厂债权纠纷等问题,引起纠纷。如该批校服是由周到服装厂自备面料加工,在1000套校服交付红光中学之前,下列表述正确的是:()
关于政府采购项目中的废标,下列说法中正确的是()。
(2008)下列围护结构,哪种热惰性指标最小?
应纳印花税的凭证应当于()贴花。
进货检验的形式通常有________。
根据我国现行宪法,有权改变或撤销地方各级国家行政机关不适当的决定和命令的国家机关是()
软件需求规格说明书的作用不包括
A、Efficiencyofgovernment.B、Environmentalprotection.C、Decentralization.D、Trafficconcerns.C根据题干要求找寻到有关韩国总统的说法,发现原文第三段“hes
最新回复
(
0
)