首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x2一y2+2在椭圆域上的最大值与最小值.
求f(x,y)=x2一y2+2在椭圆域上的最大值与最小值.
admin
2021-08-02
53
问题
求f(x,y)=x
2
一y
2
+2在椭圆域
上的最大值与最小值.
选项
答案
f(x,y)=x
2
—y
2
+2在区域D=[*]的最值应分为两种情形考虑:在椭圆域D的内部考虑无约束极值问题,在椭圆域D的边界上考虑条件极值. 方法一 考查f(x,y)=x
2
—y
2
+2在区域[*]内的极值. 令 [*] 可求得x=0,y=0,即f(x,y)在x
2
+[*]<1内有唯一驻点(0,0). 在[*]上,记y
2
=4—4x
2
,因此有 f(x,y)=x
2
一(4—4x
2
)+2=5x
2
一2=g(x),一1≤x≤1, 令[*]=10x—0,得x=0. 当x=0时,y=±2;当x=±1时,y=0. f(±1,0)=3,f(0,±2)=一2. 又 f(0,0)=2. 因此f(x,y)在D上的最大值为3,最小值为一2. 方法二 在区域[*]内解法同方法一. 在椭圆[*]上,利用拉格朗日乘数法求极值. 设L=x
2
一y
2
+2+[*],由 [*] 求得4个可能的极值点M
1
(0,2),M
2
(0,一2),M
3
(1,0),M
4
(一1,0). f(M
1
)一2,f(M
2
)=2,f(M
3
)一3,f(M
4
)=3, 又f(0,0)=2,可知f(x,y)在D上的最大值为3,最小值为一2.
解析
转载请注明原文地址:https://kaotiyun.com/show/kXy4777K
0
考研数学二
相关试题推荐
设S:x2+y2+z2=a2(z≥0),S1为S在第一象限中的部分,则有()
曲线,当x→-∞时,它有斜渐近线()
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的允分条件是
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为1/3.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
随机试题
拟新建一栋库房,最高储备量为1200t,单位面积储存定额为3t/m2,仓库有效面积利用系数为0.5,求新建仓库的面积。
产生国务院的是每届全国人民代表大会()
登革热主要的传播媒介是
属于肿瘤特异性抗原的是
体质量和温度不变,绝对压强变为原来的2倍,则密度变为原来的()倍。
关于我国储蓄国债(电子式)的特点,下列说法错误的有( )。
定金与预收款的区别是()。
在职称评审过程中,各级评审组织几乎无法看到申报人的艺术实践能力,只能看到表格栏目里的论文和项目。在唯论文是重的标准下,音乐理论的教师还能体现一些真才实学,而表演艺术的教师则只能扬短避长、_______。填入画横线部分最恰当的一项是:
下列关于运算符函数的描述中,错误的是()。
Whatdoyouunderstandfromtheman’sanswer?
最新回复
(
0
)