首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x2一y2+2在椭圆域上的最大值与最小值.
求f(x,y)=x2一y2+2在椭圆域上的最大值与最小值.
admin
2021-08-02
62
问题
求f(x,y)=x
2
一y
2
+2在椭圆域
上的最大值与最小值.
选项
答案
f(x,y)=x
2
—y
2
+2在区域D=[*]的最值应分为两种情形考虑:在椭圆域D的内部考虑无约束极值问题,在椭圆域D的边界上考虑条件极值. 方法一 考查f(x,y)=x
2
—y
2
+2在区域[*]内的极值. 令 [*] 可求得x=0,y=0,即f(x,y)在x
2
+[*]<1内有唯一驻点(0,0). 在[*]上,记y
2
=4—4x
2
,因此有 f(x,y)=x
2
一(4—4x
2
)+2=5x
2
一2=g(x),一1≤x≤1, 令[*]=10x—0,得x=0. 当x=0时,y=±2;当x=±1时,y=0. f(±1,0)=3,f(0,±2)=一2. 又 f(0,0)=2. 因此f(x,y)在D上的最大值为3,最小值为一2. 方法二 在区域[*]内解法同方法一. 在椭圆[*]上,利用拉格朗日乘数法求极值. 设L=x
2
一y
2
+2+[*],由 [*] 求得4个可能的极值点M
1
(0,2),M
2
(0,一2),M
3
(1,0),M
4
(一1,0). f(M
1
)一2,f(M
2
)=2,f(M
3
)一3,f(M
4
)=3, 又f(0,0)=2,可知f(x,y)在D上的最大值为3,最小值为一2.
解析
转载请注明原文地址:https://kaotiyun.com/show/kXy4777K
0
考研数学二
相关试题推荐
设f(x)有连续的导数,f(0)=0.f(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当x→0时,F’(x)与xk是同阶无穷小,则k等于
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续②f(x,y)在点(x0,y0)处的两个偏导数连续③f(x,y)在点(x0,y0)处可微④f(x,y)在点(x0,y0)处的两个偏导数存在若用“PQ”表示可由
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
向量组α1,α2,…,αs线性无关的充要条件是()
设,试确定a,b的值,使函数在x=0处可导。
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
已知α1,α2是非齐次线性方程组Ax=b的两个不同的解,那么α1一2α2,4α1一3α2,(2α1+α2),α1+α2中,仍是线性方程组Ax=b特解的共有()[img][/img]
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
求∫013χ2arcsinχdχ.
随机试题
下列选项中,按照属地原则确立税收管辖权的是()
全血的比重主要决定于()
患者,男性,65岁。患胃溃疡9年余。近1个月来,上腹部胀满不适,反复呕吐带酸臭味的宿食,呕吐后患者自觉胃部较舒适。体检:皮肤干燥、弹性差,唇干;上腹部膨隆,可见胃型和蠕动波,手拍上腹部可闻及振水声。经检查后拟行手术治疗而收治入院。该患者发生了
下面谱例中的旋律片段采用了()的创作手法。
科学家一直认为大脑中的“语言中心”让我们有别于人类的血缘近亲——猴子。但是,最近一项新研究发现,与人类语言能力有关的大脑区域所在位置与科学家此前认为的截然不同。这个控制语言能力的区域距离大脑中央更近,比此前认为的近了3厘米。这意味着,人类大脑与猴子大脑的相
(2010年第27题)邓小平指出:“马克思、列宁从来没有说过农村包围城市,这个原理在当时世界上还是没有的。但是毛泽东同志根据中国的具体条件指明了革命的具体道路”。毛泽东找到农村包围城市、武装夺取政权这条道路的根据是
某公司的业务员甲与客户乙通过Internet交换商业电子邮件。为保障邮件内容的安全,采用安全电子邮件技术对邮件内容进行加密和数字签名。在如图4-6所示的安全电子邮件技术的实现原理图中(1)~(4)应分别填入(44)。
一个程序最多可以有【】窗体。
Whatistheproblem?
A、ChairmanofFlaxicoB、ProductionManagerC、AccountsManagerD、SalesManagerA
最新回复
(
0
)