设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.

admin2018-01-23  13

问题 设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.

选项

答案0kf(x)dx[*]k∫01f(kt)dt=k∫01f(kx)dx,当x∈[0,1]时,因为0<k<1,所以kx≤x, 又因为f(x)单调减少,所以f(kx)≥f(x),两边积分得∫01f(kx)dx≥∫01f(x)dx, 故k∫01f(kx)dx≥k∫01f(x)dx,即∫0kf(x)dx≥k∫01f(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/kjX4777K
0

相关试题推荐
最新回复(0)