首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意光滑的有向闭合曲面片S,均有 (y﹢1)f’(x)dydz﹢(y-y2)f(x)dzdx﹢[zyf’(x)-2zex]dxdy﹦0,其中f(x)在(-∞,﹢∞)内具有连续的二阶导数,求f(x)。
设对任意光滑的有向闭合曲面片S,均有 (y﹢1)f’(x)dydz﹢(y-y2)f(x)dzdx﹢[zyf’(x)-2zex]dxdy﹦0,其中f(x)在(-∞,﹢∞)内具有连续的二阶导数,求f(x)。
admin
2019-07-24
33
问题
设对任意光滑的有向闭合曲面片S,均有
(y﹢1)f
’
(x)dydz﹢(y-y
2
)f(x)dzdx﹢[zyf
’
(x)-2ze
x
]dxdy﹦0,其中f(x)在(-∞,﹢∞)内具有连续的二阶导数,求f(x)。
选项
答案
令P(x,y)﹦(y﹢1)f
’
(z),Q(x,y)﹦(y-y
2
)f(x),R(x,y)﹦zyf
’
(x)-2ze
x
,由于f(x)在(-∞,﹢∞)内具有连续的二阶导数,所以P,Q,R在闭区域上具有一阶连续偏导数,故由高斯公式可知 [*](y﹢1)f
’
(x)dydz﹢(y-y
2
)f(x)dzdx﹢[zyf
’
(x)-2ze
x
]dxdy ﹦±[*][(y﹢1)f
”
(x)﹢(1-2y)f(x)﹢yf
’
(x)-2e
x
]dxdydz﹦0, 其中,Ω是由闭合曲面片S所围成的区域,由区域Ω的任意性可知 (y﹢1)f
”
(x)﹢(1-2y)f(x)﹢yf
’
(x)-2e
x
﹦0, 即y[f
”
(x)f
’
(x)-2f(x)]﹢[f
”
(x)﹢f(x)-2e
x
]﹦0,则有 f
”
(x)﹢f
’
(x)-2f(x)﹦0,f
”
(x)﹢f(x)-2e
x
﹦0, 求解f
”
(x)﹢f
’
(x)-2f(x)﹦0得f(x)﹦C
1
e
x
﹢C
2
e
-2x
,则该通解同样满足微分方程f
”
(x)﹢f(x)-2e
x
﹦0,代入后可得C
1
﹦1,C
2
﹦0,所以f(x)﹦e
x
。 本题考查高斯公式和齐次微分方程的计算。考生在应用高斯公式前要注意检查高斯公式成立的条件。
解析
转载请注明原文地址:https://kaotiyun.com/show/kuc4777K
0
考研数学一
相关试题推荐
设有两个数列{an},{bn},若,则()
求函数在点P(一1,3,一3)处的梯度以及沿曲线x=一t2,y=3t2,z=一3t2在点P参数增大的切线方向的方向导数.
设随机变量X~N(μ,σ2),则P(|X一μ|<2σ)().
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是A的
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖α‖=A‖α‖.
设A为反对称矩阵,则(1)若k是A的特征值,-k一定也是A的特征值.(2)如果它的一个特征向量η的特征值不为0,则ηTη=0.(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设函数其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
求两曲面x2+y2=z与-2(x2+y2)+z2=3的交线在xOy平面上的投影曲线方程。
已知随机变量X服从标准正态分布,Y=2X2+X+3,则X与Y()
设向量场A=2x3yzi—x2y2zj一x2yz2k,则其散度divA在点M(1,1,2)沿方向l={2,2,一1}的方向导数=_________.
随机试题
A、chalkB、falseC、halfD、walkC
入口、中骨盆平面及出口平面均是前后径大于横径入口横椭圆形,前后径变短,横径较长,中骨盆平面宽大
以下哪些不是耳廓的感觉神经来源
淤胆型肝炎黄疸发生的根本原因是
关于砌体结构设计与施工的以下论述:I.采用配筋砌体时,当砌体截面面积小于0.3m2时,砌体强度设计值的调整系数为构件截面面积(m2)加0.7;Ⅱ.对施工阶段尚未硬化的新砌砌体进行稳定验算时,可按砂浆强度为零进行验算;Ⅲ.在多遇
()是中国汉族僧人中唯一在印度佛教晚期西行求法的人。
Onlywhenhereachedthetea-house______itwasthesameplacehe’dbeeninlastyear.
这个________的技术时代提供了太多的可能,环球飞行正在失去人类征服自然的里程碑意义,驾驶者的英雄色彩________,而人们更关心技术——怎样造出这样的飞机来,一个了不起的飞机是否能让普通人承认林白那样的英雄。填入画横线部分最恰当的一项是:(
晚于欧洲文艺复兴运动(14至15世纪)的历史大事是()。
ShoppricesinJunefellatthefastest【C1】______ratesinceatleast2006as【C2】______foughttoattractcustomers,theBritishR
最新回复
(
0
)