首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且 ∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1. 求f(x),并要求证明:你得出来的f(x)在区间[0,+∞)上的确存在反函数.
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且 ∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1. 求f(x),并要求证明:你得出来的f(x)在区间[0,+∞)上的确存在反函数.
admin
2018-03-30
73
问题
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且
∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
—e
x
+1.
求f(x),并要求证明:你得出来的f(x)在区间[0,+∞)上的确存在反函数.
选项
答案
将 ∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
—e
x
+1 两边对x求导,得 g[f(x)]f’(x)+f(x)=xe
x
. 由于g[f(x)]=x,上式成为 xf’(x)+f(x)=xe
x
. 当x>0时,上式可以写为 f’(x)+[*]f(x)=e
x
, 由一阶线性微分方程的通解公式,得通解 [*] 由f(x)在x=0处可导且f(0)=0,得 [*] 当且仅当C=1时上式成立,所以 [*] 下面证明上面得到的f(x)在区间[0,+∞)上的确存在反函数.由所得到的表达式f(x)在区间[0,+∞)上连续,所以只要证明f(x)在x∈(0,+∞)上单调即可.由 [*] 取其分子,记为 φ(x)=x
2
e
x
—xe
x
+e
x
一1, 有φ(0)=0,φ’(x)=(x
2
+x)e
x
>0,当x∈(0,+∞)时,φ(x)>φ(0)=0,f’(x)>0.所以,f(x)在区间[0,+∞)上存在反函数.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/kwX4777K
0
考研数学三
相关试题推荐
设
设试讨论f(x)在x=0处的连续性和可导性.
=________.
设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则
设某厂家打算生产一批商品投放市场,已知该商品的需求函数为.且最大需求量为6,其中x表示需求量,P表示价格.求该商品的收益函数和边际收益函数;
某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元.若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是_________.
求不定积分
已知下列非齐次线性方程组当方程组(b)中的参数a,b,c为何值时,方程组(a)与(b)同解.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
随机试题
电阻并联电路中,能够成立关系的是()。
以下哪一种CΥ征象最有助于脑外肿瘤的诊断:
石料抗压试验要求破坏荷载应控制在压力机全程的20%~80%。()
在工程项目策划和决策阶段,项目建议书、可行性研究报告是()的工作成果。
下列选项不属于现代营销管理指导思想的是()。
研究学校情境中学与教的基本心理规律的心理学分支学科是()
在一行政诉讼案中,作为被告的某行政机关委托某律师担任诉讼代理人。该律师在诉讼期间调查收集了充分的证据材料。下列关于该律师做法的选项正确的是()。
学生认识具有与人类认识过程不同的显著特点是()。
Theideawasquitebrilliant.
Oneinsix.Believeitornot,that’sthenumberofAmericanswhostrugglewithhunger.Tomaketomorrowalittlebetter,Feedin
最新回复
(
0
)