首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且 ∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1. 求f(x),并要求证明:你得出来的f(x)在区间[0,+∞)上的确存在反函数.
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且 ∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1. 求f(x),并要求证明:你得出来的f(x)在区间[0,+∞)上的确存在反函数.
admin
2018-03-30
58
问题
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且
∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
—e
x
+1.
求f(x),并要求证明:你得出来的f(x)在区间[0,+∞)上的确存在反函数.
选项
答案
将 ∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
—e
x
+1 两边对x求导,得 g[f(x)]f’(x)+f(x)=xe
x
. 由于g[f(x)]=x,上式成为 xf’(x)+f(x)=xe
x
. 当x>0时,上式可以写为 f’(x)+[*]f(x)=e
x
, 由一阶线性微分方程的通解公式,得通解 [*] 由f(x)在x=0处可导且f(0)=0,得 [*] 当且仅当C=1时上式成立,所以 [*] 下面证明上面得到的f(x)在区间[0,+∞)上的确存在反函数.由所得到的表达式f(x)在区间[0,+∞)上连续,所以只要证明f(x)在x∈(0,+∞)上单调即可.由 [*] 取其分子,记为 φ(x)=x
2
e
x
—xe
x
+e
x
一1, 有φ(0)=0,φ’(x)=(x
2
+x)e
x
>0,当x∈(0,+∞)时,φ(x)>φ(0)=0,f’(x)>0.所以,f(x)在区间[0,+∞)上存在反函数.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/kwX4777K
0
考研数学三
相关试题推荐
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=___________。
若级数收敛,则级数
设4阶矩阵A=[α1β1β2β3],B=[a2β1β2β3],其中α1,α2,β1,β2,β3均为4维列向量,且已知行列式∣A∣=4,∣B∣=1,则行列式∣A+B∣=_______.
设随机变量X~,向量组a1,a2线性无关,则Xa1-a2,-a1+Xa2线性相关的概率为().
设x→a时,f(x)与g(x)分别是x-a的n阶与m阶无穷小,设有以下命题:①f(x)g(x)是x-a的m+n阶无穷小.②若n>m,则是x-a的n-m阶无穷小.③若n≤m,则f(x)+g(x)是x-a的n阶无穷小.则以上命题中正确的个数是(
设p(x),q(x),f(x)均是x的连续函数,y1(x),y2(x),y3(x)是yˊˊ+p(x)+yˊ+q(x)y=f(x)的三个线性无关解,C1,C2为任意常数,则齐次方程yˊˊ+p(x)+yˊ+q(x)y=0的通解为()
求|z|在约束条件,下的最大值与最小值.
非齐次线性方程组Ax=b中未知量的个数为儿,方程个数为m,系数矩阵的秩为r,则()
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值.
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
随机试题
《读书报》准备推出一种订报有奖的促销活动。如果你订了下半年的《读书报》的话,你就町以免费获赠下半年的《广播电视周报》。推出这个活动之后,报社每天都在统计新订户的情况,结果非常失望。以下哪项如果为真,最能够解释这项促销活动没能成功的原因?()
18岁,晨卧床不起,人事不省,多汗,流涎,呼吸困难。体检:神志不清,双瞳孔缩小如针尖,双肺布满湿啰音,心率60次/分,肌束震颤,抽搐,最可能的诊断是
佣金分为()。
建筑基坑支护采用重力式水泥土墙,其采用格栅形式,地基土为淤泥,则格栅的面积置换率不宜小于()。
背景资料某城市南郊雨水泵站工程临近大治河,大治河常水位为+3.00m,雨水泵站和进水管道连接处的管内底标高为-4.00m。雨水泵房地下部分采用沉井法施工,进水管为3m×2m×10m(宽×高×长)现浇钢筋混凝土箱涵,基坑采用拉森钢板桩围护。设计对雨水
在建设项目决策阶段,投资主体产生投资意向后紧接着应进行的工作是()。
国家对风景名胜区实行管理的原则是“科学规划、()、严格保护、永续利用”。
Smithsold(mostof)his(belongings).Hehashardly(nothing)left(in)thehouse.
WhatistheRepublicofIrelandcalledinIrish?
Oneofthegreatestconcernsparentshavewhenfacinganinternationalmoveis,"Whatschoolwillbeavailabletomychild?Will
最新回复
(
0
)