首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0。
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0。
admin
2017-01-14
49
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0,
试证这三条直线交于一点的充分必要条件为a+b+c=0。
选项
答案
必要性:设三条直线l
1
,l
2
,l
3
交于一点,则其线性方程组 [*] 有唯一解,故系数矩阵A= [*] 因为 [*] =6(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
], 但根据题设可知(a-b)
2
+(b-c)
2
+(c-a)
2
≠0,故 a+b+c=0。 充分性:由a+6+c=0,则从必要性的证明中可知,[*]。由于 [*] 故r(A)=2。于是 r(A)=[*]=2。 因此方程组(*)有唯一解,即三条直线,l
1
,l
2
,l
3
,交于一点。
解析
转载请注明原文地址:https://kaotiyun.com/show/kxu4777K
0
考研数学一
相关试题推荐
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
行列式
随机试题
作品的特点在于画面连续性的是()。
有关青春期,以下哪些是正确的
A.周围血中幼稚细胞、原始细胞>0.15%B.周围血中有较多幼稚细胞伴嗜酸、嗜碱性粒细胞增多C.周围血中幼红细胞、幼粒细胞易见,骨髓呈现“干抽”D.周围血中出现较多异型淋巴细胞E.周围血中易见盔形细胞、小球形细胞及破碎红细胞骨髓纤维化可见
正常精子头部呈
消炎利胆片的功能有
证券公司发现或者有合理理由怀疑客户、客户的资产或者其他资产、客户的交易或者试图进行的交易与洗钱、恐怖融资等犯罪活动相关的,不论所涉资金金额或者资产价值的大小,应当向()提交可疑交易报告。
下列关于个人独资企业的说法中,正确的有()。
企业为维持一定经营能力所必须负担的最低成本是()。
请使用【答题】菜单命令或直接用VC6打开考生文件夹下的工程proj3,其中声明的是一个人员信息类,补充编制程序,使其功能完整。在main函数中给出了一组测试数据,此种情况下程序的输出应该是:Zhang20Tsinghua。注意:只能在函数addres
WhydidRockcomeintotheroom?
最新回复
(
0
)