首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0。
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0。
admin
2017-01-14
47
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0,
试证这三条直线交于一点的充分必要条件为a+b+c=0。
选项
答案
必要性:设三条直线l
1
,l
2
,l
3
交于一点,则其线性方程组 [*] 有唯一解,故系数矩阵A= [*] 因为 [*] =6(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
], 但根据题设可知(a-b)
2
+(b-c)
2
+(c-a)
2
≠0,故 a+b+c=0。 充分性:由a+6+c=0,则从必要性的证明中可知,[*]。由于 [*] 故r(A)=2。于是 r(A)=[*]=2。 因此方程组(*)有唯一解,即三条直线,l
1
,l
2
,l
3
,交于一点。
解析
转载请注明原文地址:https://kaotiyun.com/show/kxu4777K
0
考研数学一
相关试题推荐
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
A、事件A和B互不相容B、事件A和B互相对立C、事件A和B互不独立D、事件A和B相互独立D
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
设随机变量X和Y相互独立,X在区间(0,2)上服从均匀分布,y服从参数为1的指数分布,则概率P{X+Y>1}=().
随机试题
湿性啰音的特点中不包括下述哪项
CO中毒性缺氧时,动物的黏膜呈现
大青叶、板兰根、青黛共同功效是
以下关于人民法院就数个证据对同一事实证明力认定原则的表述,正确的是()。
一个单位是否单独设置会计机构,主要由以下因素决定()。
确定地块的最佳利用方式,包括确定( )。
心理发展的不平衡性是指()。
英国肯特大学的研究人员让两组志愿者分别玩益智游戏和观看关于跑车的纪录片,然后再让他们进行室内自行车耐力测试。结果,自认为筋疲力尽的第一组成员比第二组更容易放弃。然而,研究者却发现,两组志愿者的血压、耗氧量及心排血量之间并没有差异。由此可以推出()
ThegapbetweenthosewhohaveaccesstocomputersandtheInternetandthosewhocouldn’tspelltroublenotonlyforclassroom
TheEmergingOnlineGiantsTheymaynothavethenamerecognitionofaGoogleoraYahoo!.buttheycanclaimtobelongint
最新回复
(
0
)