首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区间[0,4]上y=f(x)的导函数的图形如图1-2-1所示,则f(x)( )
设区间[0,4]上y=f(x)的导函数的图形如图1-2-1所示,则f(x)( )
admin
2019-08-12
61
问题
设区间[0,4]上y=f(x)的导函数的图形如图1-2-1所示,则f(x)( )
选项
A、在[0,2]单调上升且为凸的,在[2,4]单调下降且为凹的。
B、在[0,1],[3,4]单调下降,在[1,3]单调上升,在[0,2]是凹的,[2,4]是凸的。
C、在[0,1],[3,4]单调下降,在[1,3]单调上升,在[0,2]是凸的,[2,4]是凹的。
D、在[0,2]单调上升且为凹的,在[2,4]单调下降且为凸的。
答案
B
解析
当x∈(0,1)或(3,4)时f’(x)<0,那么f(x)在[0,1],[3,4]单调下降。当x∈(1,3)时f’(x)>0,那么f(x)在[1,3]单调上升。又f’(x)在[0,2]单调上升,那么f(x)在[0,2]是凹的f’(x)在[2,4]单调下降,那么f(x)在[2,4]是凸的。故选B。
转载请注明原文地址:https://kaotiyun.com/show/l5N4777K
0
考研数学二
相关试题推荐
(04年)设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处
(04年)设f(x)=|x(1-x)|,则
(12年)
(14年)设函数f(u)具有2阶连续导数,z=f(excosy)满足若f(0)=0,f’(0)=0,求f(u)的表达式.
(01年)一个半球体状的雪堆.其体积融化的速率与半球面面积S成正比.比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内.融化了其体积的.问雪堆全部融化需要多少小时?
(12年)(I)证明方程xn+n-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(Ⅱ)记(I)中的实根为xn,证明存在,并求此极限.
(09年)函数f(x)=的可去间断点的个数为
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系。设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用。设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
以太网交换机是工作在数据链路层的以太网扩展设备,也被称为【】
间歇脉常由于下列哪项因素造成()。
二项分布的条件
我国对药品不良反应实行()。
施工项目经理在承担工程项目施工的管理过程中,是以()身份处理与所承担的工程项目有关的外部关系。
国境卫生检疫机关对检疫传染病染疫嫌疑人必须将其隔离。
()是基金管理人违反相关法律法规和公司内部规章,违反公平交易原则,利用不同身份账户进行非法资金转移,受到相关处罚和损失的风险。
现在,越来越多的人放弃了原来的普通毛巾,用起了搓澡巾。然而,科学调查表明,除了方便外,尼龙搓澡巾对皮肤健康几乎没有什么益处。以下哪项为真。最能支持上述科学调查的结论?
目前中国已基本建立起救灾机制体系,包括()。
共产主义理想一定会实现,其依据是()
最新回复
(
0
)