首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
admin
2018-07-31
63
问题
设有两组n维向量α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
n
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
一k
1
)β
1
+…+(λ
m
一k
m
)β
m
=0,则
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
+β
1
,…,α
m
+β
m
,α
1
一β
1
,…,α
m
一β
m
线性相关.
C、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
线性无关.
答案
B
解析
由条件知有不全为零的数λ
1
,…,λ
m
,k
1
,…,k
m
,使λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
—β
1
)+…+k
m
(α
m
—β
m
)=0,所以,向量组α
1
—β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
必线性相关。
转载请注明原文地址:https://kaotiyun.com/show/l5g4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
消防水源设置出现困难必须把雨水清水池、中水清水池、水景和游泳池作为消防水源时,应有保证在火灾时能满足消防给水系统所需的水量和水质的技术措施。()
下列关于前置胎盘的超声诊断,正确的是
简述密度测定试验(环刀法)的步骤。
路基工程的地下排水设施主要有()。
基金经营机构应妥善保存交易时段客户交易区的监控录像资料,保存期限不得少于()。
丁某趁其他顾客试戴、选购手表之际迅速从柜台窃取了一块价值5000元的手表放入口袋,转身刚走出不到10米,就被一巡视的保安喝住,丁某心一慌,将手表扔在地上,迅速逃离。那么,丁某的行为属于()。
中共中央总书记、国家主席、中央军委主席习近平在莫斯科国际关系学院发表题为《顺应时代前进潮流促进世界和平发展》的重要演讲,其中提到“我们主张各国和各国人民共同享受尊严,鞋子合不合脚穿着才知道,一个国家的发展道路,只有这个国家的人民才知道”。这说明()
划横线的句子中,“这个”一词指代的是()下列说法符合原文意思的一组是()①二氧化碳是温室气体,②地球温度指的就是全球气候,③全球气候变化是全球变化的一个方面,④温室气体增加可造成环境破坏,⑤二氧化碳的增加是由能源增加引起的
《刑法》第171条第1款规定:出售、购买伪造的货币或者明知是伪造的货币而运输,数额较大的,处3年以下有期徒刑或者拘役,并处2万元以上20万元以下罚金。对此理解错误的是()。
古希腊神话中,为了追寻亡妻的灵魂而下到冥界,用音乐感动了冥王哈里斯的诗人、音乐家是()。
最新回复
(
0
)