首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求A的特征值和特征向量;
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求A的特征值和特征向量;
admin
2021-01-25
79
问题
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α
1
=[-1,2,-1]
T
,α
2
=[0,-1,1]
T
都是齐次线性方程组AX=0的解.
求A的特征值和特征向量;
选项
答案
由命题2.5.1.3知,三阶矩阵A有一个特征值3,且α
3
=[1,1,1]
T
为A的属于特征值3的特征向量. 或由[*]知,3是A的一个特征值,α
3
=[1,1,1]
T
为A的属于特征值3的特征向量,则A的属于特征值3的所有特征向量为c
1
α
2
,c
1
为不等于0的任意常数. 又由命题2.5.1.10知,α
1
,α
2
是A的属于特征值0的特征向量,或由Aα
1
=0α
1
,Aα
2
= 0α
2
也可看出这一点,所以A的特征值为3,0,0,且属于λ=0的特征向量为 k
1
α
1
+k
2
α
2
=k
1
[-1,2,-1]
T
+k
2
[0,-1,1]
T
(k
1
,k
2
为不全为0的常数). 注:命题2.5.1.1 λ
0
是矩阵A的特征值当且仅当|λ
0
E一A|=0. 对于数字型矩阵,常用特征方程|λE-A|=0求其特征值λ. 为求特征值λ
i
所对应的所有特征向量,只需解方程组(λ
i
E-A)X=0. 命题2.5.1.10 设α≠0为A
n×n
=0的解,则α为A的属于特征值0的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/lAx4777K
0
考研数学三
相关试题推荐
设n阶矩阵A与对角矩阵相似,则().
曲线y=xe1/x2
[2016年]设袋中有红、白、黑球各1个,从中有放回地取球,每次取一个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为__________.
[2003年]将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
[2015年]设矩阵且A3=O.若矩阵X满足X-XA2-AX+AXA2=E,其中E为三阶单位矩阵,求X.
[2002年]设三阶矩阵三维列向量α=[a,1,1]T,已知Aα与α线性相关,则a=_______.
求下列函数的导数:(1)y=(3x2+1)3;(2)y=e-x2+x+1;(3)y=sin(4x+5);(4)y=cosx2;
乘有20位旅客的民航送客车自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X表示停车的次数,求EX(设每位旅客在各个车站下车是等可能的,并设各旅客是否下车是相互独立的).
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a、b为非零常数,则
随机试题
从协议分析的角度,WWW服务的第一步操作是WWW浏览器对WWW服务器的()。
“驴象之争”主要用来指()
“汝来学觅钱医人乎?学传道医人乎?”是出自下列哪位医学大家的言论
患者,老年男性。近来大便次数增多,伴有排便不尽感,偶有便血,量少,色不鲜。该患者应首先进行的检查方法是
设函数f(x)=,可导,则必有()。
根据企业所得税法律制度的规定,下列非居民企业取得的所得中,不能实行源泉扣缴的是()。
A市水天公司与B市龙江公司签订一份运输合同,并约定如发生争议提交A市的C仲裁委员会仲裁。后因水天公司未按约支付运费,龙江公司向C仲裁委员会申请仲裁。在第一次开庭时,水天公司未出庭参加仲裁审理,而是在开庭审理后的第二天向A市中级人民法院申请确认仲裁协议无效。
下列选项中,属于事实认识错误的情形有()。(2012年真题)
两个日期型数据可进行减法运算,结果为______数据,日期型数据可加或减一个数值型数据,结果为______数据。
Inthepast,paintingsbyBlackAmericanartistsoftenwere(i)______;incontrast,manyartcriticstodayadvocateanunderstan
最新回复
(
0
)