首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求A的特征值和特征向量;
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求A的特征值和特征向量;
admin
2021-01-25
104
问题
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α
1
=[-1,2,-1]
T
,α
2
=[0,-1,1]
T
都是齐次线性方程组AX=0的解.
求A的特征值和特征向量;
选项
答案
由命题2.5.1.3知,三阶矩阵A有一个特征值3,且α
3
=[1,1,1]
T
为A的属于特征值3的特征向量. 或由[*]知,3是A的一个特征值,α
3
=[1,1,1]
T
为A的属于特征值3的特征向量,则A的属于特征值3的所有特征向量为c
1
α
2
,c
1
为不等于0的任意常数. 又由命题2.5.1.10知,α
1
,α
2
是A的属于特征值0的特征向量,或由Aα
1
=0α
1
,Aα
2
= 0α
2
也可看出这一点,所以A的特征值为3,0,0,且属于λ=0的特征向量为 k
1
α
1
+k
2
α
2
=k
1
[-1,2,-1]
T
+k
2
[0,-1,1]
T
(k
1
,k
2
为不全为0的常数). 注:命题2.5.1.1 λ
0
是矩阵A的特征值当且仅当|λ
0
E一A|=0. 对于数字型矩阵,常用特征方程|λE-A|=0求其特征值λ. 为求特征值λ
i
所对应的所有特征向量,只需解方程组(λ
i
E-A)X=0. 命题2.5.1.10 设α≠0为A
n×n
=0的解,则α为A的属于特征值0的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/lAx4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则()
[2015年]设总体X~B(m,θ),X1,X2,…,Xn为来自该总体的简单随机样本,为样本均值,则
[2008年]设则在实数域上与A合同的矩阵为().
[2016年]设袋中有红、白、黑球各1个,从中有放回地取球,每次取一个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为__________.
[2003年]设向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,-1,a+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)常数A;(Ⅱ)X的密度函数f(x);
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
假设随机变量X的绝对值不大于1,P(X=-1)-1/8,P(X=1)=1/4.在事件{|X|<1}出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间长度成正比,求X的分布函数F(x)=P(X≤x),并画出F(x)的图形.
设f(x)在(一∞,+∞)上二阶导数连续,1)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
随机试题
某用药咨询患者,女,30岁,孕29周。因轻度便秘向药师咨询,不当的建议是
某船只在沿海货运时刮起大风。船长根据天气预报认为台风将至,就下令将所载部分货物投入海中避免船只倾覆。后大风逐渐变小,船只安全。船长的行为属于()
某女,30岁。小腹疼痛拒按,有灼热感,伴腰骶胀痛,低热起伏,带下量多,黄稠,有臭味,小便短黄,舌红,苔黄腻,脉弦滑而数。辨证为
男性,55岁。双下肢无力半年,右侧明显,近2个月行走不稳,右手不能扣钮扣,无外伤史,无发热。体格检查,颈背部无明显压痛,两上肢前臂、手及上臂尺侧皮肤感觉减退,右侧尤其明显,四肢肌张力增高,肱二头肌反射亢进,双侧膝踝反时亢进,右髌阵挛阳性,右巴宾斯基征阳性。
A.纳洛酮B.吗啡C.右雷佐生D.美司钠E.肾上腺素阿片受体的拮抗剂是()。
对下列血脂异常者,苯氧酸类疗效最好的是
评标因素和标准一般以()的形式将各项评审因素、评审依据、评审标准明确列出。
在球罐的组装方法中,()适用于400m3以上的球罐组装,是目前国内应用最广、技术最成熟的方法。
根据我国《刑法》的规定,刑罚分为主刑和附加刑,主刑一般包括()。
提出快速联想策略和头脑风暴法的是()。
最新回复
(
0
)