首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
admin
2019-05-08
58
问题
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
选项
答案
1-q
n
(q=1-p);(1-p)
n
+np(1-p)
n-1
解析
由于每次试验中事件A发生的概率都是p,且n次试验相互独立,这是n重伯努利试验概型.设B
k
={n次试验中事件A发生忌次),由命题3.1.2.2得到
P(B
k
)=C
n
k
p
k
(1-p)
n-k
(k=0,1,…,n).
又事件A至少发生一次的概率,由命题3.1.2.3知,A至少发生一次的概率为1-(1-p)
2n
.或
1-P(B
0
)=1-C
n
0
p
0
(1-p)
n-0
=1-(1-p)
n
=1-q
n
(q=1-p).
事件A至多发生一次的概率为
P(B
0
)+P(B
1
)=C
n
0
p
0
(1-p)
n=0
+C
n
1
p(1-p)
n-1
=(1-p)
n
+np(1-p)
n-1
.
注:命题3.1.2.2 设在一次试验中事件A发生的概率为p(0<p<1),令事件B
k
={n重伯努利试验概型中事件A恰好发生k次},则
P(B
k
)=C
n
k
p
k
(1-p)
n-k
(k=0,1,2,…,n). (3.1.2.2)
上述公式常称为伯努利概率公式.
在n重伯努利试验概型中除了经常用于计算“恰好发生k次”的概率外,还会被经常用来“计算至少成功一次”或“至少失败一次”的概率.
命题3.1.2.3 若每次试验成功的概率是p(0<p<1),失败的概率为q(q=1-p),则n次试验中至少成功一次的概率为1-(1-p)
n
=1-q
n
,至少失败一次的概率为1-p
n
.
转载请注明原文地址:https://kaotiyun.com/show/HoJ4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
求幂级数n(n+1)xn的和函数.
设随机变量X1的分布函数为F1(x),概率密度函数为f1(x),且E(X1)=1,随机变量X的分布函数为F(x)=0.4F1(x)+0.6F1(2x+1),则E(X)=________。
设A,B为随机事件,0<P(A)<1,0<P(B)<1,则A,B相互独立的充要条件是()
设A,B,C为随机事件,且A发生必导致B与C最多有一个发生,则有()
已知,求a,b的值.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则=______.
随机试题
A.复合先露B.脐带先露C.脐带脱垂D.脐带缠绕E.帆状胎盘
某省政府办公厅以办公厅的名义发布一个有关该省城市环境卫生管理处罚的规范性文件,这一做法:()
【2013年第4题】题31~35:某办公室平面长14.4m,宽7.2m,高度3.6m,墙厚0.2m(照明计算平面按长14.2m,宽7.0m),工作面高度为0.75m,平面如图所示,办公室中均匀布置荧光灯具,请回答照明设计中的下列问题,并列出解答过程。
工程施工组织设计的编制原则正确的是()。
2019年3月份,李某从老家甲省A市来到乙省,租住B市区,在C市文化路科技市场从一些抱小孩的妇女处低价购买假增值税专用发票(12本300份),并印制“代办各类发票”的名片,在B市区各大酒店门口向路人散发,后通过电话联系,向有意购买假发票的人出售假增值税专用
事件是由权利主体意志为转移的,能够引起经济法律关系发生,变更和终止的,有意识的活动。()
埃及由青铜时代进入铁器时代,铁器普遍使用是在()。
[*]
WhatdoesTeacherLiteach?Don’tyouoftengohomeonfoot?
DanielDevlinlivesinthesamehousewithhischildrenandseesthemeveryday—yetheisunabletorecognizethematall.Mr.D
最新回复
(
0
)