首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
admin
2019-04-28
25
问题
[2011年] 设向量组α
1
=[1,0,1]
T
,α
2
=[0,1,1]
T
,α
3
=[1,3,5]
T
不能由向量组β
1
=[1,1,1]
T
,β
2
=[1,2,3]
T
,β
3
=[3,4,a]
T
线性表示.
将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
解一 由上题的解三知,当a=5时,经初等行变换得到 [*] 故 β
1
=2α
1
+4α
2
-α
3
, β
2
=α
1
+2α
2
, β
3
=5α
1
+10α
2
-2α
3
. 解二 设[β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]G.则 [*] 因而 [*] 即 β
1
=2α
1
+4α
2
-α
3
, β
2
=α
1
+2α
2
, β
3
=5α
1
+10α
2
-2α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hzJ4777K
0
考研数学三
相关试题推荐
设A=,已知A有三个线性无关的特征向量,且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A,B为n阶矩阵,(1)求P.Q;(2)证明:当P可逆时,Q也可逆.
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设A,B为n阶对称矩阵,下列结论不正确的是().
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
设f(x)=,求f(x)的间断点并判断其类型.
判断级数的敛散性.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为______.
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
随机试题
简述咯血病人发生窒息时的临床表现及护理要点。
以下哪种原因引起的缺氧往往无绀
A.病因不明,可能为自身免疫性疾病,病变进展可致弥漫性肺间质纤维化B.纤维素性炎C.慢性非特异性炎D.化脓性炎E.坏死性肺炎病毒性肺炎
企业为了鼓励顾客及早付清货款、大量购买、淡季购买,可以酌情降低其基本价格,这种价格调整叫做()。
(2019年)下列各项中,不属于企业会计基本假设的是()。
下列不属于稿酬所得的项目有()。
“准时化”的本质在于创造m能够灵活地适应市场需求变化的(),以保证企业整体性利润的不断提高。
Allowthatemotiontoconsumeyou.Allowyourselfoneminutetotrulyfeelthatemotion.Don’tcheatyourselfhere.Taketheent
下列关于我国传统节日的描述,与古代的说法或传说不相符的是()。
A、Politicalwill.B、Demographics.C、Socialsecurity.D、Medicare.A细节辨认题。短文中提到Therealproblemwithagingispolitics,notdemogr
最新回复
(
0
)