设f(x)连续,且满足f(x)+2∫0xf(t)dt=x2+,则关于f(x)的极值问题有( ).

admin2019-06-25  48

问题 设f(x)连续,且满足f(x)+2∫0xf(t)dt=x2+,则关于f(x)的极值问题有(    ).

选项 A、 
B、 
C、 
D、 

答案A

解析 等式两边求导,得f’(x)+2f(x)=2x,其通解为f(x)=Ce-2x+因为f(0)=.所以C=1,从而f(x)=e-2x+令f’(x)=一2e-2x+1=0,得唯一驻点为x=因为f"(x)=4e-2x>0,故x=是极小值点,极小值为
转载请注明原文地址:https://kaotiyun.com/show/lFJ4777K
0

最新回复(0)