首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2017-12-29
51
问题
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2e
x
。
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(Ⅰ)齐次微分方程f"(x)+f’(x)一2f(x)=0的特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
—2x
。 再由f"(x)+f(x)=2e
x
得2C
1
e
x
一3C
2
e
—2x
=2e
x
,因此可知C
1
=1,C
2
=0。 所以f(x)的表达式为f(x)=e
x
。 (Ⅱ)曲线方程为y=e
x2
∫
0
x
e
—t2
dt,则 [*] 令y"=0得x=0。 下面证明x=0是y"=0唯一的解,当x>0时, 2x>0,2(1+2x
2
)e
x2
∫
0
x
e
—t2
dt>0, 可得y">0; 当x<0时, [*] 可得y"<0。可知z=0是y"=0唯一的解。 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(—t
2
)dt 在x=0左、右两边的凹凸性相反,因此(0,0)点是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/lGX4777K
0
考研数学三
相关试题推荐
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解址()
设f(x)在[a,b]上二阶可导,且f’(A)=f’(b)=0.证明:∈(a,b),使
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一(f’(x))2≥0(x∈R).证明:f(x1)f(x2)≥
求微分方程y"+2y’+2y=2e-xcos2的通解.
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:这两条抛物线所围成的平面图形的面积Sn;
[*]本题常规的求解方法是先把根号里面配方,再用三角代换,但计算量较大,实际上,本题根据定积分几何意义立刻知道应填,事实上,该积分在几何上表示单位圆(x一1)2+y2≤1面积的,如图1.1.
随机试题
审美经验生成的规律是
女,55岁。发现右乳肿块1周。查体:右乳外上象限可触及一1.5cm×1.0cm肿块,质硬,活动度小。为确诊肿块性质首选的检查方法是
对病人自主与医生做主之间关系的最正确的理解是
法院对下列哪些调解协议内容应当予以准许?()
在施工现场质量检查过程中,通常用“靠、吊、量、套”等方法进行实测检查。其中,对于地面平整度的检查通常采用的手段是()。
在幼儿园中,教师选择的活动内容多是来源于儿童的生活,而且活动实施也要贯穿于幼儿的生活,这体现了幼儿园教育的()特点。
甲、乙两班同学人数相等,各有一些同学参加课外天文小组.甲班参加天文小组的人数恰好是乙班没有参加的人数的,乙班参加天文小组的人数是甲班没有参加的人数的.问甲班没有参加的人数是乙班没有参加的人数的几分之几?[img][/img]
Whatdoesthephrase"fromvariouscomersofthiscountry"probablymean?WhattheChicagoPublicschoolspreferstoinlanguag
Henoticedthehelicopterhoveringoverthefield.Thentohisastonishment,hesawaropeladder______outandthreemenclimb
WhowontheWorldCup1994footballgame?WhathappenedattheUnitedNations?Howdidthecritics【C1】______thenewplay?Just
最新回复
(
0
)