首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2017-12-29
56
问题
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2e
x
。
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(Ⅰ)齐次微分方程f"(x)+f’(x)一2f(x)=0的特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
—2x
。 再由f"(x)+f(x)=2e
x
得2C
1
e
x
一3C
2
e
—2x
=2e
x
,因此可知C
1
=1,C
2
=0。 所以f(x)的表达式为f(x)=e
x
。 (Ⅱ)曲线方程为y=e
x2
∫
0
x
e
—t2
dt,则 [*] 令y"=0得x=0。 下面证明x=0是y"=0唯一的解,当x>0时, 2x>0,2(1+2x
2
)e
x2
∫
0
x
e
—t2
dt>0, 可得y">0; 当x<0时, [*] 可得y"<0。可知z=0是y"=0唯一的解。 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(—t
2
)dt 在x=0左、右两边的凹凸性相反,因此(0,0)点是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/lGX4777K
0
考研数学三
相关试题推荐
设fn(x)=x+x2+…+xn,n=2,3,….证明:方程fn(x)=1在[0,+∞)有唯一实根xn;
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
求下列积分:
求下列积分:
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x)fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
已知随机变量(X,Y)在区域D={(x,y)|一1<x<1,一1<y<1)上服从均匀分布,则()
设D={(x,y)|x2+y2≤R2,R>0},常数λ≠0,则积分(eλrcosθ-e-λrsinθ)rdr的值().
向平面区域D:x≥0,0≤y≤4一x2内等可能地随机地投掷一点.求(1)该点到y轴距离的概率密度;(2)过该点所作y轴的平行线与x轴、y轴及曲线y=4一x2所围成的曲边梯形面积的数学期望与方差.
级数x2n-1的收敛域为__________.
判别级数的敛散性:dx()·
随机试题
患者,男性,65岁,慢性咳嗽史30余年。心电图如图3—1—6所示,提示
某女,25岁。患急性咽炎2日,症见咽痛、咽干、咽部红肿、口渴、微恶风、发热,舌边尖红、苔薄黄,脉浮数。证属外感风热,宜选用的成药是
在建筑场地设计标高确定的一般要求中,当无进车道时,一般室内地坪比室外地面高出0.45~0.60m,允许在()m的范围内变动。
外国投资者承诺用以后年度实现的利润进行再投资,即便计划用外商投资企业的利润进行再投资申请被国家有关部门批准,该再投资也不得享受再投资退税的待遇。()
()属于生物技术。
杜克(Duncker,1945)的蜡烛问题说明了()对问题解决的影响。
美国联邦所得税是累进税,收入越高,纳税率越高。美国的一些州还在自己管辖的范围内,在绝大部分出售商品的价格上附加7%左右的销售税。如果销售税也被视为所得税的一种形式的话,那么,这种税收是违背累进制原则的:收入越低,纳税率越高。以下哪项如果为真,最能
“项目”菜单的“运行文件”命令用于执行选定的文件,这些文件可以是()。
关系操作的特点是()操作。
已知三个字符为:a、X和5,按它们的.ASCII码值升序排序,结果是__________。
最新回复
(
0
)