首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2017-12-29
62
问题
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2e
x
。
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(Ⅰ)齐次微分方程f"(x)+f’(x)一2f(x)=0的特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
—2x
。 再由f"(x)+f(x)=2e
x
得2C
1
e
x
一3C
2
e
—2x
=2e
x
,因此可知C
1
=1,C
2
=0。 所以f(x)的表达式为f(x)=e
x
。 (Ⅱ)曲线方程为y=e
x2
∫
0
x
e
—t2
dt,则 [*] 令y"=0得x=0。 下面证明x=0是y"=0唯一的解,当x>0时, 2x>0,2(1+2x
2
)e
x2
∫
0
x
e
—t2
dt>0, 可得y">0; 当x<0时, [*] 可得y"<0。可知z=0是y"=0唯一的解。 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(—t
2
)dt 在x=0左、右两边的凹凸性相反,因此(0,0)点是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/lGX4777K
0
考研数学三
相关试题推荐
求下列函数的导数:y=aax+axx+axa+aaa(a>0);
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
设X在[0,2π]上服从均匀分布,求Y=cosX的密度函数.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设A是n阶矩阵.证明:A=O的充要条件是AAT=O.
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
微分方程的通解是________.
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
A、∫12ln2xdx.B、2∫12lnxdx.C、2∫12ln(1+x)dx.D、∫12ln2(1+x)dx.B结合积分的定义,则故选B.
随机试题
肝药酶的特点是
关于质量改进的意义,下列法说不准确的是()
在二级市场上,决定债券流通转让价格的主要因素是()。
对于银行借款来说,如果不考虑借款手续费用,则按贴现模式计算的银行借款资本成本就是银行获得的利息收益率。()
在电磁波谱中,可见光、红外线和紫外线三个波段的频率大小关系是()。
张家口:保定
给定材料1.2013年11月9日,中共十八届三中全会在北京召开,全面深化改革的蓝图即将展开,挺进深水区和攻坚期的中国改革,下一步该如何突破和推进,是社会各界非常期待的议题。当前,站在政治体制改革的角度来讲,难点可以归结为一个字,就是权。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
在某台路由器上定义了一条访问控制列表access-list109denyicmp10.1.10.100.0.255.255anyhost-unreachable,其含义是(51)。
Whatisthemostimportantfunctionoftrees?
最新回复
(
0
)