首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2017-12-29
89
问题
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2e
x
。
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(Ⅰ)齐次微分方程f"(x)+f’(x)一2f(x)=0的特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
—2x
。 再由f"(x)+f(x)=2e
x
得2C
1
e
x
一3C
2
e
—2x
=2e
x
,因此可知C
1
=1,C
2
=0。 所以f(x)的表达式为f(x)=e
x
。 (Ⅱ)曲线方程为y=e
x2
∫
0
x
e
—t2
dt,则 [*] 令y"=0得x=0。 下面证明x=0是y"=0唯一的解,当x>0时, 2x>0,2(1+2x
2
)e
x2
∫
0
x
e
—t2
dt>0, 可得y">0; 当x<0时, [*] 可得y"<0。可知z=0是y"=0唯一的解。 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(—t
2
)dt 在x=0左、右两边的凹凸性相反,因此(0,0)点是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/lGX4777K
0
考研数学三
相关试题推荐
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解址()
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(A)=f(b)=g(A)=g(b)=0.证明:在(a,b)内,g(x)≠0;
设f(x)=x3+4x2一3x一1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
曲线的斜渐近线方程为________.
利用列维一林德伯格定理,证明:棣莫弗一拉普拉斯定理.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
设A是n阶矩阵.证明:A=O的充要条件是AAT=O.
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
微分方程的通解是________.
[*]事实上,在几何上原题中积分应等于球体x2+y2+z2≤a2的体积的一半,因此应为
随机试题
采用比色法测定肉、蛋制品中组胺的含量时,试样预处理中使用三氯乙酸进行组胺的提取。
A.肩关节外展受限B.肩部疼痛、无活动受限C.肘关节外侧疼痛D.肘关节活动受限E.Finkelstein试验阳性肱骨外上髁炎
下列关于酮体的描述错误的是
患者男,45岁。患冠心病10年余,间断胸闷1周,1目前于夜间突然被迫坐起,频繁咳嗽,严重气急,咳大量粉红色泡沫痰。该患者首先考虑的诊断是()
按照《工程建设项目自行招标试行办法》规定,招标人自行招标的,应当自确定中标人之日起15日内,向()提交招标投标情况的书面报告。
混凝土坝表面裂缝可用()抹浆。
供应链创新商
下列关于商用房贷款的签约流程表述错误的是()。
世界上的度量衡主要有()。
素质教育的根本目的在于全面提升学生的科学文化素养。()
最新回复
(
0
)