首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2017-12-29
83
问题
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2e
x
。
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(Ⅰ)齐次微分方程f"(x)+f’(x)一2f(x)=0的特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
—2x
。 再由f"(x)+f(x)=2e
x
得2C
1
e
x
一3C
2
e
—2x
=2e
x
,因此可知C
1
=1,C
2
=0。 所以f(x)的表达式为f(x)=e
x
。 (Ⅱ)曲线方程为y=e
x2
∫
0
x
e
—t2
dt,则 [*] 令y"=0得x=0。 下面证明x=0是y"=0唯一的解,当x>0时, 2x>0,2(1+2x
2
)e
x2
∫
0
x
e
—t2
dt>0, 可得y">0; 当x<0时, [*] 可得y"<0。可知z=0是y"=0唯一的解。 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(—t
2
)dt 在x=0左、右两边的凹凸性相反,因此(0,0)点是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/lGX4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上二阶可导,且f’(A)=f’(b)=0.证明:∈(a,b),使
作函数的图形
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一(f’(x))2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1一eλX的概率密度函数fy(y).
设随机变量X与y相互独立,且X~N(0,1),Y~B(n,p)(0<p<1),则X+Y的分布函数()
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
随机试题
试论教学的因材施教原则。
根据《中华人民共和国证券法》的规定,下列关于证券交易方式或制度的说法,错误的有()。Ⅰ.公开发行的证券,必须在依法设立的证券交易所上市交易Ⅱ.证券交易必须采用无纸化交易方式Ⅲ.证券在证券交易所上市交易,可以采用公开的集中交易方式
某公司是一家由王某一手创建的民营企业,经过十几年的发展,其发展规模已处于行业前列,下列是关于该公司的相关信息:该公司系王某一手创建,由其担任首席执行官,并兼任董事会主席。
在进行标准成本差异分析时,通常把变动成本差异分为价格脱离标准造成的价格差异和用量脱离标准造成的数量差异两种类型。下列标准成本差异中,通常应由生产部门负责的有()。
地图是地理学的第二语言。下列地理事物在地图中采用半依比例尺符号表示的是()。
下列外国作家、作品、国别对应错误的一项是()。
为使下列代码正常运行,应该在下划线处填入的选项是 int〔〕numbers=newint[n]; for(Inti=0;i
下列关于ASCⅡ编码的叙述中,正确的是
在计算机内部用来传送、存储、加工处理的数据或指令所采用的形式是_______。
Whichofthefollowingwouldbethemostsuitabletitleforthispassage?Theauthorsaystherisksofusingnuclearpowerare
最新回复
(
0
)