首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f’(0)=0,求f(u)的表达式.
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f’(0)=0,求f(u)的表达式.
admin
2022-07-21
49
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
.若f’(0)=0,求f(u)的表达式.
选项
答案
设u=e
x
cosy,则z=f(u)=f(e
x
cosy),于是 [*] 由条件[*]=(4z+e
x
cosy)e
2x
,可知f’’(u)=4f(u)+u,这是一个二阶常系数线性非齐次微分方程. 对应齐次方程的通解为: f(u)=C
1
e
2u
+C
2
e
-2u
,其中C
1
,C
2
为任意常数 对应非齐次方程特解可求得为y
*
=-[*]u,故非齐次方程通解为 f(u)=C
1
e
2u
+C
2
e
-2u
-[*]u 将初始条件f(0)=0,f’(0)=0代入,可得C
1
=1/16,C
2
=-1/16,所以f(u)的表达式为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lGf4777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程确定的隐函数,则y’’=______。
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是____________。
设z=f(χ2+y2+z2,χyz)且f一阶连续可偏导,则=_______.
由曲线χ=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及χ轴围成平面图形的面积5=_______.
设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成F(x,y)=H(r)(r=),求此二元函数F(x,y).
已知a,b,c不全为零,证明方程组只有零解.
计算二重积分其中D是由直线y=2,y=x和双曲线xy=1所围成的平面域.
设直线y=ax与抛物线y=x2所围成的图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.试确定a的值,使S=S1+S2达到最小,并求出最小值.
在球面x2+y2+z2=1上取以A(1,0,0),B(0,1,0),C(0,0,1)为顶点的球面三角形∑,如果该球面三角形的面密度为ρ=x2+z2,则此球面三角形的质量m=________________.
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=e/n,求函数项级数fn(x)之和.
随机试题
决策中枢系统的主要任务。
Inancienttimeswealthwasmeasuredandexchangedtangibly,inthingsthatcouldbetouched:foods,tools,andpreciousmetals
患者,男,67岁。慢性肺气肿病史30多年。2周前感冒,后出现发热、咳嗽,咳大量黏液脓痰,近3日来咳嗽无力,痰不易咳出,气急、发绀。不可采取的护理措施是
咬诊主要用于检查()
肝的募穴是肾的募穴是
重大资产重组中相关资产以资产评估结果作为定价依据的,上市公司董事会应当对( )发表明确意见。
甲、乙、丙、丁四人合作创作一部小说,甲欲将该小说许可给某电影制片厂改编后拍成电影,乙则想把它许可给某网站在网络上传播,丙对这两种做法均表示反对,丁则不置可否。对此,下列哪一选项是正确的?()
不能作为第一顺序法定继承人的是()。
有如下程序:#includeusingnamespacestd;classC1{public:~C1(){cout
在微机中,西文字符所采用的编码是()。
最新回复
(
0
)