首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
admin
2018-01-23
50
问题
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
选项
答案
因为A,B正定,所以A
T
=A,B
T
=B,从而(A+B)
T
=A+B,即A+B为对称矩阵. 对任意的X≠0,X
T
(A+B)X=X
T
AX+X
T
BX,因为A,B为正定矩阵,所以X
T
AX>0, X
T
BX>0,因此X
T
(A+B)X>0,于是A+B为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/lNX4777K
0
考研数学三
相关试题推荐
设arctan
设,B是三阶非零矩阵,且BAT=0则秩r(B)=_________.
设x→0时,ex2一(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c为常数,则().
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求Anβ.
设f(x)在[a,b]上连续,且f(x)>0,又证明:(1)F′(x)≥2;(2)F(x)=0在[a,b]内有且仅有一个实根.
设向量组I:α1,α2,…,αs,Ⅱ:β1,β2,…,βr,且向量组I可由向量组Ⅱ线性表示,下列结论正确的是()
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
若向量组α1=(1,1,λ)T,α2=(1,λ,1)T,α3=(λ,1,1)T线性相关,则λ=_______.
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
随机试题
食管癌最常见的病理类型是
下列有关托收当事人之间的关系的表述正确的是哪些?()
甲股份有限责任公司(以下简称甲公司)2019年所有者权益变化情况如下:(1)2019年年初股本总额为1000万股,每股面值为1元;资本公积为2000万元;盈余公积为5000万元;未分配利润为600万元。甲公司占A公司有表决权股份的25
甲集团公司(以下简称甲公司)成立于1989年,现总部位于中国上海。20多年来,甲公司从单一的服装业务稳健发展成为集科技、时尚、金融服务、医药等产业于一体的多元化产业集群。该公司追求一种动态的环境,不断探索和发现新产品和市场机会。从单一的服装业务稳健发展成
吴某是南溪镇红星村村民,为了照顾岳父母,他在汤家汇镇东方红村已经连续居住两年多。下列关于村民委员会选举的说法,正确的是()。
下列关于财产清查的说法,正确的有()。
根据以下资料,回答116-120题2008年浙江省对美国的进出口总额为:
春风得意:闭月羞花
已满14周岁不满16周岁的人,犯下列(),应当负刑事责任。
HTTP协议是一种()协议。
最新回复
(
0
)