首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,α5为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+α5).
设向量组α1,α2,…,α5为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+α5).
admin
2017-12-31
40
问题
设向量组α
1
,α
2
,…,α
5
为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α
1
,…,β+α
5
).
选项
答案
α
1
,α
2
,…,α
s
线性无关,因为Aβ≠0,所以β,β+α
1
,…,β+α
s
线性无关, 故方程组BY=0只有零解.
解析
转载请注明原文地址:https://kaotiyun.com/show/lPX4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=XTAX=ax12+222一223+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.求a,b的值;
设矩阵,已知线性方程组AX=β有解但不惟一,试求(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵。
已知线性方程组是正定矩阵求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T为3维实向量。
设对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
随机变量X一N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量.且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
设f(x),g(x)在(一∞,+∞)上有定义,且x=x1是f(x)的唯一间断点,x=x2是g(x)的唯一间断点,则()
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数在x=0处连续,则常数A=__________.
随机试题
甲公司委托乙银行向丙企业收取款项,丙企业开户银行在债务证明到期日办理划款时,发现丙企业存款账户不足支付的,可以采取的行为是()。
进行双侧唇裂整复术最适合的年龄为
A.百日咳B.急性肺水肿C.支气管扩张D.主动脉瘤E.胸膜炎可引起长期慢性咳嗽的是
患者,女,70岁。拟行膝关节置换术,无磺胺类药过敏史,皮试结果呈阴性。体征和实验室检查:低热,无感染,空腹血糖4.6mmol/L,血常规白细胞计数6.0×109/L。手术医师处方抗菌药物预防感染。围术期预防性用药的起始给药时机是
乳腺癌发展过程中最常见的转移部位是
ETC车道预告类标志设置在收费站前()m适当位置,主要用于告知驾驶员前方收费站设有ETC车道。
以下关于施工质量计划的审批程序的处理原则说法,正确的是()。
2017年全国统一高考6月7日至8日进行,这是恢复高考以来的()全国高考,2017年全国高考报名考生共940万人。
年终,为答谢外宾对我市发展做出的重大贡献,现要举办一次茶话会,邀请一些对城市发展做出突出贡献的外宾参加,领导把此次茶话会的策划、执行工作交由你负责,你会怎么做?
()对于服装相当于雕琢对于()
最新回复
(
0
)