首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
admin
2017-08-18
65
问题
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为
其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T
0
结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
选项
答案
考虑事件A:“试验直至时间T
0
为止,有k只器件失效,而有n—k只未失效”的概率.记T的分布函数为F(t),即有 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
):1一[*];而在 时间T
0
未失效的概率为P{T>T
0
}=1一F(T
0
)=[*].由于各只器件的试验结果是相互独立的,因 此事件A的概率为 [*] 这就是所求的似然函数.取对数得 lnL(λ)=lnC
n
k
+kln(1一[*])+(n一k)(一λT
0
), [*] 于是A的最大似然估计为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lbr4777K
0
考研数学一
相关试题推荐
(1999年试题,2)设其中g(x)是有界函数,则f(x)在x=0处().
(2004年试题,1)把x→0+时的无穷小量排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是().
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0所确定,其中f,g,h对各变量有连续的偏导数,且求
设f(x,y)在(x0,y0)某邻域有定义,且满足:f(x,y)=f(x0,y0)+a(x一x0)+b(y—y0)+a(ρ)(ρ→0),其中a,b为常数.则
设f(x)在[0,1]连续且非负但不恒等于零,记则它们的大小关系为
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求α的值;
设随机变量X在[0,2]上服从均匀分布,y服从参数λ=2的指数分布,且X,Y相互独立.求P|X+2y≤3}.
(I)设f(x1,x2,x3)=x12+2x22+6x32一2x1x2+2x1x3—6x2x3,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定阵;(Ⅱ)设求可逆阵D,使A=DTD.
商店出售10台洗衣机,其中恰有3台次品.现已售出一台洗衣机,在余下的洗衣机中任取两台发现均为正品.则原先售出的一台是次品的概率为
设f(x)是连续函数.求初值问题的解,其中a>0;
随机试题
患者,女,68岁,胸闷憋气,兼伴短暂刺痛反复发作5年,近一周因生气而诱发加重。刻下胸痛较剧,为刺痛感,发作频繁,每次持续1~2分钟,憋气闷满,心悸头晕,烦躁少寐,便干,舌暗红,苔黄腻,脉弦细,滑数。中医诊断为心血闭阻,肝气化火,兼有痰浊。处方血府逐瘀口服液
蜂窝织炎的主要致病菌为
各级重大危险源应达到的受控标准是:一级危险源在()以上,二级危险源在()以上,三级和四级危险源在()以上。
收货人栏如显示以下()字样时,提单被称为托运人指示提单。
企业的下列账证中,适用定额税率贴印花税的是()。
为维护物业管理活动的交易秩序,《物业管理条例》和《物业服务收费管理办法》均明确规定:对于欠费业主,业主委员会()
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
A.Doyouknowwhatahandicappedspaceis?B.Thesignsalwaystellyouhowlongyoucanparkthereandonwhatdays.C.Theny
为了使列表框中的项目分为多列显示,需要设置的属性为()。
以下说法中正确的是
最新回复
(
0
)