首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
admin
2016-09-12
31
问题
设α
1
,α
2
,…,α
n
为n个n维向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,…,α
n
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示,取e
1
=[*],则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故α
1
,α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/lht4777K
0
考研数学二
相关试题推荐
设F(x)=,S表示夹在x轴与曲线y=F(x)之间的面积,对任何t>0,S1(t)表示矩形-t≤x≤t,0≤y≤F(t)的面积,求:S(t)=S-S1(t)的表达式。
求极限.
若f(x)在x=0点连续,且存在,证明f(x)在x=0点可导。
证明:
设抛物线y=-x2+Bx+C与x轴有两个交点x=a,x=b(a<b),又f(x)在[a,b]上有二阶导数,且f(a)=f(b)=0,若曲线y=f(x)与y=-x2+Bx+C在(a,b)内有一个交点,求证:在(a,b)内存在一点ξ,使得f"(ξ)+2=0.
求下列不定积分。∫esinxcosxdx
某厂家生产的一种产品同时在两个市场进行销售,售价分别为p1和p2;销售量分别为q1和q2,需求函数分别为q1=24-0.2p1q2=10-0.05p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售价,能使其获得总利润最大?最
设二阶常系数线性微分方程y"+ay’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
随机试题
A、红细胞沉降率增高B、X线呈竹节状改变C、两者均可D、两者均不可类风湿性关节炎可见
缺铁性贫血正确补充铁剂应包括
阑尾动脉来源于
孕36周后除有以下情况者,应引产终止妊娠()
该患儿的临床诊断最大可能是下列治疗措施,哪一项应慎用或禁用
根据我国《立法法》的规定,下列哪些主体既可以向全国人民代表大会,也可以向全国人民代表大会常务委员会提出法律案?
在工作中,假如遇到主要领导对你的工作不支持,该怎么办?
如图,是某个公园ABCDEF,M为AB的中点,N为CD的中点,P为DE的中点,O为FA的中点,其中浏览区APEQ与BNDM的面积和是900平方米,中间的湖水面积为361平方米,其余的部分是草地,草地的总面积是()平方米。
战国七雄
Thereareonlytwowaystogatherinformationfromhumansubjectsaboutwhattheyarecurrentlydoing,thinking,orfeeling.On
最新回复
(
0
)