首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
admin
2016-09-12
67
问题
设α
1
,α
2
,…,α
n
为n个n维向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,…,α
n
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示,取e
1
=[*],则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故α
1
,α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/lht4777K
0
考研数学二
相关试题推荐
设f(x)连续,证明∫abf(x)dx=(b-a)∫01f[a+(b-a)x]dx。
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于________。
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=________。
求定积分.
如图所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线L1与直线L2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx。
求实数C,使收敛,并求出积分值。
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
二元函数f(x,y)在点(x0,y0)处两个偏导数f’x(x0,y0),f’y(x0,y0)存在是f(x,y)在该点连续的________。
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
随机试题
工程项目管理中,工程项目计划的主要作用有()。
我国企业会计的确认、计量和报告应当以收付实现制为基础。()
()均为固定利率贷款,即执行合同利率。
某企业于20×2年成立(假定所得税税率为25%.),当年发生亏损120万元,20×3年至20×8年每年实现利润总额为20万元。除弥补亏损外,假定不考虑其他纳税调整事项及盈余公积。则20×8年年底该企业“利润分配—未分配利润”科目的借方余额为()
人体在深夜里要比在白天分泌更多的抑制疼痛的荷尔蒙。因此,在夜间进行手术的外科病人需要较少的麻醉剂。因为大量的麻醉剂会对病人造成较大的危险,所以如果手术经常在夜间进行,就会减少外科手术的风险。下列哪项如果正确,最能反对在夜间进行手术会减少外科手术风险这个观点
请用不超过100字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。就给定资料所反映的主要问题,用1000字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻,有说服力。
设置会计科目和账户的目的是()。
树立正确的择业观和创业观,对于大学生顺利走进职业生活具有重要的现实意义。大学生要树立正确的择业观,必须要做到()
ThanksgivingDayTheAmericanThanksgivingDaycelebrationgoesbackto1621.Inthatyear,aspecialdinnerwaspreparedin
A、Tofindanimportant,interestingjob.B、Towinrespectfromothers.C、Todoresearchinhisfield.D、Toestablishafamily.A
最新回复
(
0
)