首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
admin
2019-05-08
100
问题
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:
①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;
③若AX=0与BX=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则AX=0与BX=0同解.
那么,以上命题中正确的是( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
解一 由命题2.4.6.2知命题③正确.又命题①也正确.这是因为AX=0的解均是BX=0的解,则AX=0的基础解系是BX=0的基础解系的一部分,因此AX=0的基础解系所含向量个数小于等于BX=0的基础解系所含向量的个数,即n-秩(A)≤n-秩(B),从而秩(A)≥秩(B).
解二 用排错法求之.取
则易求得AX=0的通解为c
1
[0,0,1]
T
=[0,0,c
1
]
T
,BX=0的通解为
c
2
[1,0,0]
T
+c
3
[0,1,0]
T
=[c
2
,c
3
,0]
T
,其中c
1
,c
2
,c
3
为任意常数.
虽然秩(A)=2>秩(B)=1,但AX=0的解[0,0,c
1
]
T
不都是BX=0的解[c
2
,c
3
,0]
T
,故命题②错误.
若取
则易得AX=0的通解为k
1
[0,1]
T
=[0,k
1
]
T
,k
1
为任意常数;BX=0的通解为k
2
[1,0]
T
=[k
2
,0]
T
,k
2
为任意常数.虽然秩(A)=秩(B)=1,但AX=0与BX=0的解不相同,即不同解.命题④错误.
下面证命题③正确.事实上,由命题①正确得秩(A)≥秩(B).再由AX=0与ABX=0同解知,BX=0的解均是AX=0的解,则秩(B)≥秩(A),于是秩(A)=秩(B),命题③正确.仅(B)入选.
注:命题2.4.6.2 AX=0和BX=0同解的充要条件是其基础解系相同,必要条件是秩(A)=秩(B).
转载请注明原文地址:https://kaotiyun.com/show/lsJ4777K
0
考研数学三
相关试题推荐
求.
设总体X的概率密度为其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本,为样本均值。(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量。
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设A为n阶矩阵,下列结论正确的是().
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
曲线y=的斜渐近线为______.
设且f和g具有连续偏导数,求和
随机试题
孕妇,30岁,G1P0,孕35周,胎方位LSA,胎心率144次/分,监测胎儿宫内安危的最简易方法是
在编制一般工艺钢结构预制安装工程措施项目清单时,当拟建工程中有工艺钢结构预制安装,有工业管道预制安装,可列项的是()。
路基填筑前应按照设计文件要求对地基或基底面进行处理,选择具有代表性的地段,进行填筑压实工艺性试验,确定主要工艺参数,并报()确认。
先于一定的活动而又指向该活动的一种动力准备状态称为()
新的教育本质观认为,教育不仅具有文化传承的功能,更应该有培养()的功能。
马克思主义认为,人的全面发展的真正实现是在()
维罗纳会议
在面向对象设计中,基于父类创建的子类具有父类所有的属性与方法,这一特点成为类的_____。A.封装性B.多态性C.重用性D.继承性
Canyouletme______homealittleearlier?
Thisisasetofrecommendationsfor______.Accordingtotheadvicegivenaboutwomenexpectingbabies,______.
最新回复
(
0
)