首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
admin
2019-05-08
92
问题
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:
①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;
③若AX=0与BX=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则AX=0与BX=0同解.
那么,以上命题中正确的是( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
解一 由命题2.4.6.2知命题③正确.又命题①也正确.这是因为AX=0的解均是BX=0的解,则AX=0的基础解系是BX=0的基础解系的一部分,因此AX=0的基础解系所含向量个数小于等于BX=0的基础解系所含向量的个数,即n-秩(A)≤n-秩(B),从而秩(A)≥秩(B).
解二 用排错法求之.取
则易求得AX=0的通解为c
1
[0,0,1]
T
=[0,0,c
1
]
T
,BX=0的通解为
c
2
[1,0,0]
T
+c
3
[0,1,0]
T
=[c
2
,c
3
,0]
T
,其中c
1
,c
2
,c
3
为任意常数.
虽然秩(A)=2>秩(B)=1,但AX=0的解[0,0,c
1
]
T
不都是BX=0的解[c
2
,c
3
,0]
T
,故命题②错误.
若取
则易得AX=0的通解为k
1
[0,1]
T
=[0,k
1
]
T
,k
1
为任意常数;BX=0的通解为k
2
[1,0]
T
=[k
2
,0]
T
,k
2
为任意常数.虽然秩(A)=秩(B)=1,但AX=0与BX=0的解不相同,即不同解.命题④错误.
下面证命题③正确.事实上,由命题①正确得秩(A)≥秩(B).再由AX=0与ABX=0同解知,BX=0的解均是AX=0的解,则秩(B)≥秩(A),于是秩(A)=秩(B),命题③正确.仅(B)入选.
注:命题2.4.6.2 AX=0和BX=0同解的充要条件是其基础解系相同,必要条件是秩(A)=秩(B).
转载请注明原文地址:https://kaotiyun.com/show/lsJ4777K
0
考研数学三
相关试题推荐
求函数f(x)=∫0x2(2-t)e-tdt的最大值与最小值.
设f(x)连续,且g(x)=∫0xx2f(x-t)dt,求g’(x).
已知连续型随机变量X的概率密度为又知E(X)=0,求a,b的值,并写出分布函数F(x)。
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数。
设a0=1,a1=2,a2=,an+1=an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
下列命题不正确的是().
证明:S(x)=满足微分方程y(4)-y=0并求和函数S(x).
求和n=0,1,2,3,…
设且f和g具有连续偏导数,求和
随机试题
We_.Pleasefastenyourseatbelt.()
新生儿通过胎盘从母体中获得的免疫球蛋白是
男性,23岁。3年来多次于夜晚饱餐后次日清晨醒来发现四肢不能活动,大小便正常,吞咽和呼吸正常,数日后恢复,已发作5次。今晨醒来又出现四肢不能运动。体检:颅神经正常,四肢肌力均为1级,腱反射低,无病理反射,感觉正常,该患者首选治疗措施是
编制数量指标指数一般是采用()做同度量因素。
机器设备的经济性贬值通常与()有关。
如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.求AE的长.
Loveroftowns______Iam.IrealizethatIoweadebttomyearlycountrylife.
下列关于WindowsServer2003系统下DNS服务器的描述中,错误的是()。
下列链表中,其逻辑结构属于非线性结构的是
下面程序有注释的语句中,错误的语句是( )。 #include <iostream> using namespace std; class A{ int a; public: void show A(
最新回复
(
0
)