首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
admin
2019-05-08
106
问题
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:
①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;
③若AX=0与BX=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则AX=0与BX=0同解.
那么,以上命题中正确的是( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
解一 由命题2.4.6.2知命题③正确.又命题①也正确.这是因为AX=0的解均是BX=0的解,则AX=0的基础解系是BX=0的基础解系的一部分,因此AX=0的基础解系所含向量个数小于等于BX=0的基础解系所含向量的个数,即n-秩(A)≤n-秩(B),从而秩(A)≥秩(B).
解二 用排错法求之.取
则易求得AX=0的通解为c
1
[0,0,1]
T
=[0,0,c
1
]
T
,BX=0的通解为
c
2
[1,0,0]
T
+c
3
[0,1,0]
T
=[c
2
,c
3
,0]
T
,其中c
1
,c
2
,c
3
为任意常数.
虽然秩(A)=2>秩(B)=1,但AX=0的解[0,0,c
1
]
T
不都是BX=0的解[c
2
,c
3
,0]
T
,故命题②错误.
若取
则易得AX=0的通解为k
1
[0,1]
T
=[0,k
1
]
T
,k
1
为任意常数;BX=0的通解为k
2
[1,0]
T
=[k
2
,0]
T
,k
2
为任意常数.虽然秩(A)=秩(B)=1,但AX=0与BX=0的解不相同,即不同解.命题④错误.
下面证命题③正确.事实上,由命题①正确得秩(A)≥秩(B).再由AX=0与ABX=0同解知,BX=0的解均是AX=0的解,则秩(B)≥秩(A),于是秩(A)=秩(B),命题③正确.仅(B)入选.
注:命题2.4.6.2 AX=0和BX=0同解的充要条件是其基础解系相同,必要条件是秩(A)=秩(B).
转载请注明原文地址:https://kaotiyun.com/show/lsJ4777K
0
考研数学三
相关试题推荐
求幂级数n(n+1)xn的和函数.
微分方程xy’=+y的通解为______.
已知随机变量X服从参数为λ的指数分布,则P{X+Y=0}=________;P{Y≤}=________。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2).
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设且f和g具有连续偏导数,求和
随机试题
形成肝风内动的原因可有()(1993年第128题)
在一瞬间人的意识所能指向并集中的客体的数量,是注意的哪一种品质【】
男性,42岁,左下腹痛1个月,便血,里急后重,下列哪项检查:较简便,有诊断意义
位于第三脑室顶的结构是
根尖狭窄部距牙根尖部的距离约为
原发性不孕症的定义是
有关新生儿肺炎,不正确的概念是
简述《普通高中地理课程标准(实验)》“评价建议”中“对情感、态度与价值观形成的评价”的内容。
可交换债券
文化现象
最新回复
(
0
)