首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量. (1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设A=有三个线性无关的特征向量. (1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
admin
2019-08-28
41
问题
设A=
有三个线性无关的特征向量.
(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由|λE-A|=[*]=(λ+2)(λ-1)
2
=0得矩阵A的特征值为λ
1
=-2,λ
2
=λ
3
=1, 因为A有三个线性无关的特征向量,所以A可以相似对角化,从而r(E-A)=1,由E-A=[*]得a=-1. (2)将λ=-2代入(λE-A)X=0,即(2E+A)X=0, 由2E+A=[*]得 λ=-2对应的线性无关的特征向量为α
1
=[*] 将λ=1代入(λE-A)X=0,即(E-A)X=0, 由E-A=[*]得 λ=1对应的线性无关的特征向量为α
2
=[*],α
3
=[*] (3)令P=[*],则P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lvJ4777K
0
考研数学三
相关试题推荐
求幂级数(2n+1)x2n+2的收敛域,并求其和函数.
已知级数条件收敛,则常数p的取值范围是
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:Ⅰ)存在η∈(a,b),使得f(η)=g(η);Ⅱ)存在ξ∈(a,b),使得f’’(ξ)
(1992年)设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕z轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足的a.(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=()
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
设A、A为同阶可逆矩阵,则()
设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=_______.
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
随机试题
TCP/IP协议的攻击类型共有四类,那么针对网络层攻击中,哪几个协议攻击是利用的比较多的
下列哪项属于绛舌的临床意义
牙髓炎的主要病因是
中毒型细菌性痢疾的内因是()
由寒凝气滞,或痛则不通,或瘀血内阻,或筋脉拘急,使面部脉络血行瘀阻,则见由气虚血少,或阳衰寒盛,气血不能上充于面部脉络,则见
从功能角度分析,机器由哪几部分组成?各组成部分有何功用?
一般来说,新生儿的气质类型分成三种类型。以下属于新生儿气质类型的有()。
以下对于数据库的几种关键字的描述中,错误的是(20)。
Thebourgeoismythologysawtheworkersasmobsofthestupidandmisled,instigatedbyagitatorswhocouldnototherwisehaveea
Accordingtotheauthor,thedistinctionbetweenviolentactsandnon-violentonesinsportsis______.Asportsviolence"apol
最新回复
(
0
)