首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量. (1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设A=有三个线性无关的特征向量. (1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
admin
2019-08-28
21
问题
设A=
有三个线性无关的特征向量.
(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由|λE-A|=[*]=(λ+2)(λ-1)
2
=0得矩阵A的特征值为λ
1
=-2,λ
2
=λ
3
=1, 因为A有三个线性无关的特征向量,所以A可以相似对角化,从而r(E-A)=1,由E-A=[*]得a=-1. (2)将λ=-2代入(λE-A)X=0,即(2E+A)X=0, 由2E+A=[*]得 λ=-2对应的线性无关的特征向量为α
1
=[*] 将λ=1代入(λE-A)X=0,即(E-A)X=0, 由E-A=[*]得 λ=1对应的线性无关的特征向量为α
2
=[*],α
3
=[*] (3)令P=[*],则P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lvJ4777K
0
考研数学三
相关试题推荐
判别下列级数的敛散性.若收敛,需说明是绝对收敛还是条件收敛.
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则()
(2011年)证明方程恰有两个实根.
(93,6分)假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f’’(ξ)=0.
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设A=,E为3阶单位矩阵.求方程组Ax=0的一个基础解系;
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则()
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:A2;
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
随机试题
阅读下面文字,完成文后各题。门沿龙应台旧年最末一个晚上,十八岁的华飞去和朋友午夜狂欢。我坐在旅店的窗边,台北冬季的天空洁净,尤其当城市
下列各项保险收入,应当缴纳营业税的有()。(2002年)
A.维生素K拮抗剂B.口服可吸收C.二者均可D.二者均不可
吴某,男,24岁,发热已五六日,热略减退,突然出现肢体软弱无力,步履艰难,心烦口渴,咳呛不爽,咽喉干燥,小便黄少,大便干燥,舌质红苔黄,脉细数。若身热退净,食欲减退,口燥咽干较甚者,治疗方剂宜
诊断急性肾盂肾炎最有意义的是哪项
背景材料:某桥主跨为40×50m预应力混凝土简支T梁桥,主墩基础为直径2.0m的钻孔灌注桩,桥址处地质为软岩层,设计深度为20m,采用回转钻进施工法钻孔。根据有关检验标准,施工单位制定了钻孔灌注桩的主要检验内容和实测项目如下:(1)终孔
下列属于企业财务报告附注中应披露的内容有()。
自去年以来,某中外合资玩具制造公司生产经营出现了严重困难,今年年初,公司中方总经理提出了建立工资集体协商制度的建议,主要理由是:推行该制度不但有利于稳定员工队伍,减少人才流失,更有利于有效控制人工成本,使员工与公司携手合作共渡难关。对此,公司专门召开董事会
"Agoodnewspaperisanationtalkingtoitself,"musedArthurMillerin1961.Adecadelater,tworeportersfromtheWashington
Modernindustrialsocietygrantslittlestatustooldpeople.Infact,suchasocietyhasasystemofbuilt-inobsolescence.The
最新回复
(
0
)