首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。 (I)试将x=x(y)所满足的微分方程变换为y=y(z)满足的微分方程; (Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。 (I)试将x=x(y)所满足的微分方程变换为y=y(z)满足的微分方程; (Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的
admin
2018-03-11
101
问题
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。
(I)试将x=x(y)所满足的微分方程
变换为y=y(z)满足的微分方程;
(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,
的解。
选项
答案
(I)将题中的[*]变换成以x为自变量y为因变量的导数[*]来表示(即通常所说的反函数变量变换),有 [*] 代入原方程,得 y"一y=sinx。 (*) (Ⅱ)方程(*)所对应的齐次方程为y"一y=0,特征方程为r
2
一1=0,根r
1,2
=±1,因此通解为Y=C
1
e
x
+C
2
e
-x
。 设方程(*)的特解为y
*
=Acosx+Bsinx,则 y
*
′=一Asinx+Bcosx,y
*
"=一Acosx—Bsinx, 代入方程(*),得 一Acosx一Bsinx—Acosx一Bsinx=一2Acosx一2Bsinx=sinx, 解得A=0,[*]从而y"一y=sinx的通解为 [*] 由y(0)=0,[*]得C
1
=1,C
2
=一1。故变换后的微分方程满足初始条件y(0)=0,y′(0)=[*]的解为 [*] 且y(x)的导函数[*]满足题设y′≠0条件。
解析
转载请注明原文地址:https://kaotiyun.com/show/lvr4777K
0
考研数学一
相关试题推荐
(1)求函数项级数e-x+2e-2x+…+ne-nx+…收敛时x的取值范围;(2)当上述级数收敛时,求其和函数S(x),并求
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
设矩阵有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P使得P-1AP=A,A是对角阵.
向半径为r的圆内随机抛一点,求此点到圆心之距离X的分布函数F(x),并求
求微分方程y’’+2y’+y=xex的通解.
(2014年)设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f′(0)=0,求f(u)的表达式。
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
(2016年)若反常积分收敛,则()
(1998年)设l是椭圆其周长记为a,则
(2003年)设则a2=____________.
随机试题
下列各项中,属于初步业务活动的有()。
真理的绝对性亦称绝对真理
成熟红细胞获得能量的唯一途径是
为了最大程度地取得沟通效应,沟通时应坚持三项原则,下列不属于三项原则的是()。
甲公司为增值税一般纳税人,适用的增值税税率为13%。甲公司以人民币作为记账本位币,外币业务采用业务发生时的市场汇率折算,按月计算汇兑损益。(1)甲公司2020年3月份发生的有关外币交易或事项如下:①3月3日,将100万美元兑换为人民币,兑换取得
下列关于股票分割和股票股利的共同点的说法中,不正确的是()。
历史教师在创设有效的历史教学情境时,应创设的教学情境有哪些?
[*]
prenant()
WhendidLincolnbecomepresident?
最新回复
(
0
)