首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数p的0-1分布,令 求随机变量(X1,X2)的联合分布。
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数p的0-1分布,令 求随机变量(X1,X2)的联合分布。
admin
2017-01-14
36
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数p的0-1分布,令
求随机变量(X
1
,X
2
)的联合分布。
选项
答案
根据题意随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0)。题目中是要计算出取各相应值的概率。注意事件Y
1
,Y
2
,Y
3
相互独立且服从同参数P的0-1分布,所以它们的和Y
1
+Y
2
+Y
3
[*] Y,服从二项分布B(3,p)。于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2}=P{Y=0}+P{Y=3}=(1-p
3
)+p
3
, P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2}=P{Y=2}=3p
2
(1-p), P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3p(1-p)
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=[*]=0。 计算可得(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lxu4777K
0
考研数学一
相关试题推荐
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
求下列有理函数不定积分:
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A是m×n矩阵,B是,n×m矩阵,则
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P|x<y|=().
随机试题
俗称“蛤蟆肿”是指A.黏液腺囊肿B.舌下腺囊肿C.皮样囊肿D.表皮样囊肿E.甲状舌管囊肿
甲委托其在外地的好友乙代购药材,并汇去2万元钱。因一时无货,乙便以甲的名义将钱暂存银行。乙的好友丙因生产经营急需用钱,去找乙,乙便拿出甲的存折给丙,由丙的好友丁担保。乙未将上述情况告知甲。后丙因生产经营不善无力还款而引起纠纷。甲诉至法院。本案中哪些法律关系
下列不属于出卖人义务的选项有()。
从广义上讲,下列人员中属于银行业从业人员范畴的还有()。
________指人们对自己是否能够成功地进行某一成就行为的主观推测和判断。
甲状腺大部切除后,引起窒息的原因包括()。
该图反映的是刑事案件进入刑事司法流程的数量变化情况。在各刑事司法机关均努力履行各自职责的情况下,若刑事案件仍呈此变化趋势,下列贯彻综合治理应侧重的方面有:
有一种细菌和一种病毒,每个细菌在每一秒末能杀死一个病毒的同时将自身分裂为两个。现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要()秒。
Thearrivalofthemass-producedcar,justoveracenturyago,causeda(n)(1)_____ofbusinesscreation.Firstcamethemakerso
Theunauthorized(未经授权的)copyingofcomputerprogramsbyAmericanbusinessesalonedeprivedsoftwarepublishersof$1.6billion
最新回复
(
0
)