首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
admin
2016-09-30
85
问题
设α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,而向量组α
1
,α
2
,…,α
m
,γ线性相关.证明:向量γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
选项
答案
因为向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,所以向量组α
1
,α
2
,…,α
m
也线性无关,又向量组α
1
,α
2
,…,α
m
,γ线性相关,所以向量γ可由向量组α
1
,α
2
,…,α
m
线性表示,从而γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/lzu4777K
0
考研数学一
相关试题推荐
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x-t)dt=ax2.求f(x);
∫5+∞dx=________.
设平面区域D={(x,y)|≤1),则二重积分I==_______.
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
设随机变量X-N(0,1),Y~N(1,4)且相关系数ρXY=1,则().
设(X1,X2,…,Xn)为取自正态总体X~N(μ,σT)的样本,则μ2+σ2的矩法估计量为
(1998年试题,一)设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为___________.
随机试题
患者,女,65岁。确诊为乙肝后肝硬化8年,腹胀伴双下肢水肿2个月,加重伴无尿3天。查体蛙状腹,腹部静脉曲张,液波震颤阳性,双下肢可凹性水肿。化验血钠120mmol/L,BUN19mmol/L。与肝硬化腹水形成无关的是
患者女性,25岁。右足癣并感染1周,2天前开始出现右小腿有片状红疹,颜色鲜红,中间较淡,边缘清楚,右腹股沟淋巴结肿大。该患者可能的诊断是
动物感染寄生虫后,引起消瘦、营养不良的主要原因是
对于腮腺区肿物,哪种检查是不恰当的
某一开发商需要对一个房地产开发项目的甲、乙、丙、丁四种方案做出选择,在两种不同的市场状况下,项目投资的收益率如下表。根据上述材料,回答下列问题当开发商按照乐观法进行决策时,应选择的方案为()。
工程咨询方法分为通用方法和专用方法,通用方法包括()。
富足感是衡量()的指标,借由()来累积财富的目标
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出问题和解决问题能力、文字表达能力的测试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”依次作答。二、给定资料
如果要在窗体上画一个标签,应在工具箱窗口中选择的图标是
(骆驼的特点是能够)____________________tocoveralongdistancewithoutdrink.
最新回复
(
0
)