首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f’(η)+f(η)].
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f’(η)+f(η)].
admin
2022-10-09
62
问题
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e
2ξ-η
=(e
a
+e
b
)[f’(η)+f(η)].
选项
答案
令φ(x)=e
x
f(x),由微分中值定理,存在η∈(a,b),使得[f(b)-f(a)]/(b-a)=e
η
[f’(η)+f(η)],再由f(a)=f(b)=1,得(e
b
-e
a
)/(b-a)=e[f’(η)+f(η)],从而(e
2b
-e
2a
)/(b-a)=(e
a
+e
b
)e
η
[f’(η)+f(η)],令φ(x)=e
2x
,由微分中值定理,存在ξ∈(a,b),使得(e
2b
-e
2a
)/(b-a)=2e
2ξ
,即2e
2ξ
=(e
a
+e
b
)e
η
[f’(η)+f(η)],或2e
2ξ-η
=(e
a
+e
b
)[f’(η)+f(η)].
解析
转载请注明原文地址:https://kaotiyun.com/show/m7R4777K
0
考研数学三
相关试题推荐
设3元实二次型f(x)=xTAx经正交变换x=Cy化成是Ax=0的解向量.写出该实二次型d(x)的表达式.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足tr(A)=-6.AB=C,其中求出该二次型f(x1,x2,x3).
设矩阵已知A的一个特征值为3.试求y;
设矩阵若向量都是方程组Ax=0的解,试证r(A)=2;
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
设f(x)二阶可导,且f(1)=1,证明:存在ξ∈(0,1),使得f’’(ξ)-2f’(ξ)=﹣2.
设f(x)∈C[a,b],在(a,b)内二阶可导.(Ⅰ)若f(a=0,f(b)0.证明:存在ξ∈(a,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0;(Ⅱ)若f(a)=f(b)==0,证明:存在η∈(a,b),使得f’’(η)=f(η).
已知某种商品的需求价格弹性为η=ep一1,其中p为价格,Q为需求量,且当p=1时需求量Q=1.试求需求函数.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,fˊ(x)>l>0,其中l为常数.若f(a)<0,则在区间(a,a+)内方程f(x)=0的实根个数为()
设函数f(x)有连续的导数,且f(0)=0,f’(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当n→0时,函数F’(x)与xk为同阶无穷小,则k等于().
随机试题
分别指出下列常用宏操作的功能:OpenTable、OpenForm、OpenQuery、OpenReport、OpenDataAccessPage
A.水脏B.娇脏C.刚脏D.孤府
A.氢氯噻嗪B.心得安C.呋塞米D.卡托普利E.哌唑嗪高血压病并双侧肾动脉狭窄患者禁用的药物是
丹痧邪侵肺卫治则是水痘毒热重症治则是
Na+泵的特点是
下列不属于气机失调表现的是()。
过梁上与过梁成600角的三角形范围及过梁净跨度()的高度范围内,不得在其上设置脚手眼。
2008年12月31日借款利息资本化的金额为( )万元。2008年全年实际利息费用为( )万元。
作品独创性的判断不在于文字的多寡。而在于通过文字所_________出来的精妙构思和遣词造句的功底,如微型小说、微型散文、微型童话或微型诗歌等,以微博为载体表现出来_________的作品。填入划横线部分最恰当的一项是:
McDonald’s,Greggs,KFCandSubwayaretodaynamedasthemostlitteredbrandsinEnglandasKeepBritainTidycalledonfast-fo
最新回复
(
0
)