设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.

admin2021-10-18  30

问题 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.

选项

答案存在ξ∈(0,1/2),η∈(1/2,1),使得f’(ξ)=[f(1/2)-f(0)]/(1/2-0)=2[f(1/2)-f(0)],f’(η)=[f(1)-f(1/2)]/(1-1/2)=2[f(1)-f(1/2)],因为f(0)=f(1)。所以f’(ξ)=-f’(η),即f’(ξ)+f’(η)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/mAy4777K
0

最新回复(0)