首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
admin
2019-08-23
64
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O.证明:A不可以对角化.
选项
答案
令AX=AX(X≠0),则有A
k
X=λ
k
X,因为A
k
=O,所以λ
k
X=0,注意到X≠0,故λ
k
=0,从而λ=0,即矩阵A只有特征值0. 因为r(0E-A)=r(A)≥1,所以方程组(0E-A)X=0的基础解系至多含n-1个线性无关的解向量,故矩阵A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/m7N4777K
0
考研数学二
相关试题推荐
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
已知问λ取何值时,β不能由α1,α2,α3线性表出.
随机试题
颜真卿的《祭侄文稿》的字体属于()。
下列关于民事诉讼与仲裁关系的处理,哪些是正确的?()
房屋采暖设备中,膨胀水箱是用来容纳受热后管内的膨胀水和排出水中气体的,它一般放置在( )。
“教育一定要成为一种学业,否则无所希望”,“教育的方法必须成为一种科学”。“否则决不能成为一种有系统的学问”。这正是()的“教育学”超出他的前人和同代人的地方。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
对中国31个省市自治区的商人信任度的调查结果表明,一半本地人都认为本地人值得信任。如北京人为北京人打出的可信任度分数是57.9,而为天津人打出的分数是15。有一个地方例外,就是H省人自己并不信赖H省人。以下陈述如果为真,除了哪项之外,都能对上述的例外提供合
设f(x)=,在x=1处可微,则a=________,b=________.
以下叙述中错误的是
Earthquakesoftenhappennearvolcanoes,butthisisnotalwaystrue.Thecentersofsomeare【L1】______.Thebottomoftheseas
Researchershaveestablishedthatwhenpeoplearementallyengaged,biochemicalchangesoccurinthebrainthatallowittoact
最新回复
(
0
)