首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
admin
2019-08-23
79
问题
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
选项
答案
由微分中值定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 [*] 因为点A,B,C共线,所以f′(ξ
1
)=f′(ξ
2
), 又因为f(χ)二阶可导,所以再由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f〞(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/qzA4777K
0
考研数学二
相关试题推荐
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:方程组Ax=b的任一解均可由η,η+ξ1,…,η+ξn-r线性表出.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设函数z=z(χ,y)由方程χ=f(y+z,y+χ)所确定,其中f(χ,y)具有二阶连续偏导数,求dz.
设有矩阵Am×n,Bn×m,且Em+AB可逆.设其中利用上题证明P可逆,并求P-1.
设f(x)在x0处n阶可导,且f(n)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n≥2),证明:(1)当n为偶数且f(n)(x0)<0时f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>0时f(x)在x0处取得极小值.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f′(ξ)+f′(η)=0.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
随机试题
流行性感冒病毒鼻病毒
2014年7月7日,某药品生产企业在某晚报大篇幅刊登国药广审(文)第2012110745号药品广告,该广告宣称“八大医院权威认证,安全、一天起效,三十天痊愈”。对该药品广告批准文号格式的说法,正确的是
根据合同分类,这两份买卖合同都属于( )。关于李某与赵某、孙某的效力问题,正确的是( )。
期货市场的形成和高效安全运行大大增加了金融市场与商品市场的关联度,提高了市场体系的运行效率。( )
根据以下情境材料,回答问题。近期,某县城发生多起儿童失踪案件。为了防止此类事件的发生,县公安局派出四个巡逻组,对县城进行巡逻,并记录巡逻情况。下表是该公安局一周的记录:根据警情记录,儿童失踪应是一犯罪团伙作案,为了加大巡逻力度,下列安排合理的是(
世界各国发展水平之间的不平衡_______,表现为一种经济差距_______技术差距,同时_______表现为一种知识差距、教育差距,_______两者之间日趋表现出互为因果的关系。填入画横线部分最恰当的一项是()。
海拔越高,空气越稀薄。因为西宁的海拔高于西安,因此,西宁的空气比西安稀薄。以下哪项中的推理与题干的最为类似?
有三个关系R、S和T如下:由关系R和S通过运算得到关系T,则所使用的运算为()。
UrbanizationUntilrelativelyrecently,thevastmajorityofhumanbeingslivedanddiedwithouteverseeingacity.Thefir
Thematerialinthisinformationisconfidential,andanyreproductionor_______isprohibited.
最新回复
(
0
)