首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不可由α1,α2,α3线性表示,则对任意常数k,必有( ).
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不可由α1,α2,α3线性表示,则对任意常数k,必有( ).
admin
2019-08-21
40
问题
设n维列向量α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,向量β
2
不可由α
1
,α
2
,α
3
线性表示,则对任意常数k,必有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
对于抽象的向量组,可以用定义法,也可以用排除法.
解:设有一组数字λ
1
,λ
2
,λ
3
,λ
4
,满足λ
1
+λ
2
+λ
3
+λ
4
(kβ
1
+β
2
)=0,
若λ
4
=0,则有条件λ
1
=λ
2
=λ
3
=0,从而推出α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
若λ
4
≠0,则kβ
1
+β
2
可由α
1
,α
2
,α
3
线性表示,而β
1
可由α
1
,α
2
,α
3
线性表示,故β
2
也可由α
1
,α
2
,α
3
线性表示,矛盾,所以,λ
4
=0,从而(A)正确.对于其余三个选项,也可用排除法.当k=0时,可排除(B)、(C)项;当k=1时,可排除(D)项.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/MKN4777K
0
考研数学二
相关试题推荐
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
假设λ为n阶可逆矩阵A的一个特征值,证明:为A的伴随矩阵A*的特征值.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及∫f(x)dx.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
设A是n阶矩阵,下列命题错误的是().
(2013年)设封闭曲线L的极坐标方程为r=cos3θ,则L所围平面图形的面积是________.
[2014年]曲线L的极坐标方程为r=θ,则L在点(r,θ)=处切线的直角坐标方程为________.
随机试题
企业资本结构决策方法主要有()
与肾性高血压有关的致血压升高的生理活性物质有
A.GBB.GB/TC.GBZD.WSE.HB行业标准的字母符号简称是
原位菌群失调是指正常菌群生活在原来部位,但出现
A.手术B.放疗C.化疗D.中药治疗E.免疫治疗
某公司现注册资本为200万元。为了扩大生产经营规模,该公司准备吸收新的投资者,将注册资本增加到250万元。按照投资协议,新的投资者需出资lOO元,同时享有该公司1/5的股份。那么由于新投资者加入而增加的资本公积份额是()万元。
要选修数理逻辑课,必须已修普通逻辑课,并对数学感兴趣。有些学生虽然对数学感兴趣,但并没修过普通逻辑课,因此,有些对数学感兴趣的学生不能选修数理逻辑课。以下哪项的逻辑结构与题干的最为类似?
在VB中,函数过程与子程序过程的区别之一是
Amajorreasonfor【21】______intheanimalworldisterritory.Themaleanimalestablishesanarea.Thesizeoftheareais
A、 B、 C、 A
最新回复
(
0
)