首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续且单调递增的奇函数,已知F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
设f(x)是连续且单调递增的奇函数,已知F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
admin
2019-12-06
56
问题
设f(x)是连续且单调递增的奇函数,已知F(x)=∫
0
x
(2u-x)f(x-u)du,则F(x)是( )
选项
A、单调递增的奇函数
B、单调递减的奇函数
C、单调递增的偶函数
D、单调递减的偶函数
答案
B
解析
令x-u=t,则
F(x)=∫
0
x
(x-2t)f(t)dt,F(﹣x)=∫
0
﹣x
(﹣x-2t)f(t)dt,
令t=﹣u,则
F(﹣x)=﹣∫
0
x
(﹣x+2u)f(﹣u)du=∫
0
x
(x-2u)f(﹣u)du。
因为f(x)是奇函数,则
f(x)=﹣f(﹣x),F(﹣x)=﹣∫
0
x
(x-2u)f(u)du,
则有F(x)=﹣F(﹣x),故F(x)为奇函数。
F
’
(x)=∫
0
x
f(t)dt-xf(x),
由积分中值定理可得∫
0
x
f(t)dt=f(ξ)x,ξ介于0到x之间,故
F
’
(x)=f(ξ)x-xf(x)=[f(ξ)-f(x)]x,
因为f(x)单调递增,则当x﹥0时,ξ∈[0,x],f(ξ)-f(x)﹤0,所以F
’
(x)﹤0,F(x)单调递减;当x﹤0时,ξ∈[x,0],f(ξ)-f(x)﹥0,所以F
’
(x)﹤0,F(x)单调递减。所以F(x)是单调递减的奇函数。
转载请注明原文地址:https://kaotiyun.com/show/mTA4777K
0
考研数学二
相关试题推荐
设z=,则=_______.
设有长为12cm的非均匀杆AB,AM部分的质量与动点M到端点A的距离χ的平方成正比,杆的全部质量为360(g),则杆的质量表达式m(χ)=_______,杆在任一点M处的线密度P(χ)=_______.
设A为奇数阶矩阵,AAT=ATA=E,且|A|>0,则|A—B|=_____________.
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
作自变量与因变量变换:u=x+y,v=x-y.w=xy-z.变换方程为w关于u,v的偏微分方程,其中z对x,y有连续的二阶偏导数.
设有来自三个地区各10名,15名,25名考生的报名表,其中女生的报名表分别为3价,7份,5份.随机地取出一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率p;(2)已知后取到的一份是男生表,求先抽到的一份是女生表的概率q.
设齐次线性方程组其中a≠0,6≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
求下列极限:
验证函数在[0,2]上满足拉格朗日定理.
随机试题
在Excel2010中,B5、C5单元格的数据分别为10、20,拖动鼠标选中B5:C5区域并选单击“合并后居中”按钮,在弹出的对话框中再单击“确定”按钮,则单元格内容为()
患者,女,32岁,因甲型肝炎收入院治疗,应采取的隔离是
某银行以某公司未偿还贷款为由向法院起诉,法院终审判决认定其请求已过诉讼时效,予以驳回。某银行向某县政府发函,要求某县政府落实某公司的还款责任。某县政府复函:“请贵行继续依法主张债权,我们将配合做好有关工作。”而后,某银行向法院起诉,请求某县政府履行职责。法
在项目竣工验收和总结评价阶段,咨询工程师的主要工作不包括()。
A公司中标承建某排水工程,主要包括:高位井(兼顶管工作井)一座;内径∮1.6m,全长1856m钢筋混凝土顶管一条;采用垂直顶升法施工的外径∮0.48m垂直排放管14根。本顶管的顶距较长,且管径较小,因此施工组织设计应针对超长距离顶进的工程特点,把顶管
2008年,工商管理专业毕业的大学生张某选择了自主创业的方式就业,在亲属的资金支持下创办了一家小型企业。该企业的业务是为汽车厂加工螺丝垫片。12名员工全部由其他企业的下岗人员组成。对于该企业的组织管理,大学生张某必须做出科学的决策。根据以上资料,回答下列
下列关于股份有限公司董事会的组成表述正确的是()。
()是统一战线组织又是民间商会。
用螺旋图形装在色轮上()
用于核对某些重要行为是否呈现的记录法是()。
最新回复
(
0
)