首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续且单调递增的奇函数,已知F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
设f(x)是连续且单调递增的奇函数,已知F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
admin
2019-12-06
33
问题
设f(x)是连续且单调递增的奇函数,已知F(x)=∫
0
x
(2u-x)f(x-u)du,则F(x)是( )
选项
A、单调递增的奇函数
B、单调递减的奇函数
C、单调递增的偶函数
D、单调递减的偶函数
答案
B
解析
令x-u=t,则
F(x)=∫
0
x
(x-2t)f(t)dt,F(﹣x)=∫
0
﹣x
(﹣x-2t)f(t)dt,
令t=﹣u,则
F(﹣x)=﹣∫
0
x
(﹣x+2u)f(﹣u)du=∫
0
x
(x-2u)f(﹣u)du。
因为f(x)是奇函数,则
f(x)=﹣f(﹣x),F(﹣x)=﹣∫
0
x
(x-2u)f(u)du,
则有F(x)=﹣F(﹣x),故F(x)为奇函数。
F
’
(x)=∫
0
x
f(t)dt-xf(x),
由积分中值定理可得∫
0
x
f(t)dt=f(ξ)x,ξ介于0到x之间,故
F
’
(x)=f(ξ)x-xf(x)=[f(ξ)-f(x)]x,
因为f(x)单调递增,则当x﹥0时,ξ∈[0,x],f(ξ)-f(x)﹤0,所以F
’
(x)﹤0,F(x)单调递减;当x﹤0时,ξ∈[x,0],f(ξ)-f(x)﹥0,所以F
’
(x)﹤0,F(x)单调递减。所以F(x)是单调递减的奇函数。
转载请注明原文地址:https://kaotiyun.com/show/mTA4777K
0
考研数学二
相关试题推荐
设u=f(χ,y,z)有连续的一阶偏导数,又函数y=y(χ)及z=z(χ)分别由下列两式确定eχy-χy=2,eχ=,求=_______.
曲线处的切线方程为___________。
设三阶矩阵A的特征值为λ1=-1,,其对应的特征向量为α1,α2,α3,令P=(2α3-3α1-α2),则p-1(A-1+2E)P=_______
设A为三阶实对称矩阵,且为A的不同特征值对应的特征向量,则a=_______.
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
求从点A(10,0)到抛物线y2=4x的最短距离.
设抛物线y=ax2+bx+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=ax2+bx+c与抛物线y=一x2+2x所围图形的面积最小,求a,b,c的值.
求下列极限:
设exsin2x为某n阶常系数线性齐次微分方程的一个解,则该方程的阶数n至少是__________,该方程为__________.
函数y=x2x的极小值点为_______.
随机试题
基金投资组合公告的披露事项主要包括( )。
作为一门课程,公共关系学首次在大学内被讲授是在【 】
导致泄泻发生的重要因素是:
A、液-液萃取法B、沉淀法C、硅胶色谱法D、聚酰胺色谱法E、离子交换色谱法根据物质溶解度不同进行分离的方法是
股份有限公司作出增加或者减少注册资本的决议,必须经出席会议的股东()以上通过。
上级领导用于对下级机关布置工作、阐明工作活动原则的指导性文件,称为()。
下列属于“丝绸之路”上保留至今的文明遗迹是()。
设
数学表达式写成c++语言的表达式为【】。
Readthee-mailsbelow.Completethebookingformontheoppositepage.Writeawordorphrase(inCAPITALLETTERS)oranumber
最新回复
(
0
)