首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q—1AQ=Λ。
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q—1AQ=Λ。
admin
2019-03-23
35
问题
已知矩阵A=
有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q
—1
AQ=Λ。
选项
答案
因λ=5是矩阵A的特征值,则由 |5E—A|=[*]=3(4—a
2
)=0, 可得a=±2。 当a>0,即a=2时,则由矩阵A的特征多项式 |λE—A|=[*]=(λ—2)(λ—5)(λ—1)=0, 可得矩阵A的特征值是1,2,5。 由(E—A)x=0,得基础解系α
1
=(0,1,—1)
T
; 由(2E—A)x=0,得基础解系α
2
=(1,0,0)
T
; 由(5E—A)z=0,得基础解系α
3
=(0,1,1)
T
。 即矩阵A属于特征值1,2,5的特征向量分别是α
1
,α
2
,α
3
。 由于A为实对称矩阵,且实对称矩阵不同特征值的特征向量相互正交,故只需将以上特征向量单位化,即有 [*] 那么,令Q=(γ
1
,γ
2
,γ
3
)=[*],则有Q
—1
AQ=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/mTV4777K
0
考研数学二
相关试题推荐
设f(x)=∫0xdt,求f’(x).
证明:
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ2,γ3,γ1),|A|=a,|B|=b,求|A+B|.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
矩阵A=,求解矩阵方程2A=XA-4X.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
若A是n阶正定矩阵,证明A-1,A*也是正定矩阵.
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。验证是A的
随机试题
古希腊对美的研究很多,但对丑研究却不够。其原因是()
∫e3xdx=_______.
下丘脑-腺垂体调节激素的分泌调控,主要受其调节的内分泌靶腺(细胞)释放的激素水平长反馈调节,主要作用于腺垂体的激素是
我国列入职业性肿瘤的有以下哪种
乙型强心苷具有的性质是
建设工程项目总投资中的建设投资目前暂停征收的是()。
设置工资项目属于薪资管理系统中的()操作。
当前,有学者指出,物业税改革会增加房屋的持有成本,从而增加房产市场的供给,进而对房价产生一定的调控作用。目前,开征物业税是我国财税体制改革必不可少的环节。而在我国很多房屋的所有权和使用权是分离的,在当前房产税的征收过程中,有相当一部分是房屋使用人纳税,但从
求曲线L:在点(1,1,0)处的切线与法平面.
Oneproblemwithmuchpersonalityresearchisthatitexaminesandrateswhatevertraitstheresearchersareinterestedinatth
最新回复
(
0
)