首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q—1AQ=Λ。
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q—1AQ=Λ。
admin
2019-03-23
45
问题
已知矩阵A=
有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q
—1
AQ=Λ。
选项
答案
因λ=5是矩阵A的特征值,则由 |5E—A|=[*]=3(4—a
2
)=0, 可得a=±2。 当a>0,即a=2时,则由矩阵A的特征多项式 |λE—A|=[*]=(λ—2)(λ—5)(λ—1)=0, 可得矩阵A的特征值是1,2,5。 由(E—A)x=0,得基础解系α
1
=(0,1,—1)
T
; 由(2E—A)x=0,得基础解系α
2
=(1,0,0)
T
; 由(5E—A)z=0,得基础解系α
3
=(0,1,1)
T
。 即矩阵A属于特征值1,2,5的特征向量分别是α
1
,α
2
,α
3
。 由于A为实对称矩阵,且实对称矩阵不同特征值的特征向量相互正交,故只需将以上特征向量单位化,即有 [*] 那么,令Q=(γ
1
,γ
2
,γ
3
)=[*],则有Q
—1
AQ=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/mTV4777K
0
考研数学二
相关试题推荐
当x→0时下列无穷小是x的n阶无穷小,求阶数n:(Ⅰ)(Ⅱ)(1+tan2x)sinx-1;(Ⅲ)(Ⅳ)∫0xsint.sin(1-cost)2dt.
矩阵A=,求解矩阵方程2A=XA-4X.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.(1)计算ABT与ATB;(2)求矩阵ABT的秩r(ABT);(3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。求的关系式
随机试题
垄断厂商长期均衡的条件是()
[*]
炎性乳癌
女性,54天,黑粪40天伴贫血于10月13日入院。患儿是第1胎,足月顺产,因地震系在防震棚出生。生后14天始排黑粪,量不等,未见脐及皮肤等处出血,不发热。因贫血严重,多次输血及药物治疗均无效。粪便检查:有(56~76)×(36~40)mm虫卵,椭圆形。两
下列对“严格实行国有土地有偿使用制度”的叙述,正确的有()。
下列情形中,人民法院应当再审的有()。[2013年真题]
青海省有“草原门户”之称的是()。
试分析英语film用作名词时5项意义之间的派生关系:①皮肤薄膜;②眼睛里长出的异常薄膜(俗称眼翳);③薄薄的一层透明膜状物;④摄影用的胶卷;⑤电影。
TopmanagementrolesatmultinationalcorporationsinAsiaaretypicallyheldbyWesterners.ButnotjustanytypeofWesterner-
某公司分配给人事部的IP地址块为211.67.19.224/27,分配给培训部的IP地址块为211.67.19.208/28,分配给销售部的IP地址块为215.167.19.192/28,那么这3个地址块经过聚合后的地址为()。
最新回复
(
0
)