首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
admin
2015-11-16
49
问题
已知n维向量α
1
,α
2
,…,α
s
线性无关,如果n维向量β不能由α
1
,α
2
,…,α
s
线性表出,而γ可由α
1
,α
2
,…,α
s
线性表出,证明α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关。
选项
答案
证一 利用拆项重组法及线性无关的定义证之。 由题设γ可由α
1
,α
2
,…,α
s
线性表出,可设 γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
, 又令 k
1
α
1
+k
2
(α
1
+α
2
)+…+k
s
(α
s
+α
s-1
)+k(β+γ)=0。 将其拆项重组得到 (k
1
+k
2
+kc
1
)α
1
+(k
2
+k
3
+kc
2
)α
2
+…+(k
s
+kc
s
)α
s
+kβ=0。 因α
1
,α
2
,…,α
s
线性无关,而β不能由α
1
,α
2
,…,α
s
线性表出,故α
1
,α
2
,…,α
s
,β线性无关,因而 k=0, k
1
+k
2
+kc
1
=0, k
2
+k
3
+kc
2
=0, …, k
s
+kc
s
=0, 即 k
1
+k
2
=0,k
2
+k
3
=0,…,k
s-1
+k
s
=0,k
s
=0, 解得 k
1
=k
2
=…=k
s-1
=k
s
=0, 即α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关。 证二 注意到α
1
,α
2
,…,α
s
,β线性无关,γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
,由 [*] 而α
1
,α
2
,…,α
s
,β线性无关,由矩阵表示法即知α
1
,α
2
,…,α
s
,β+γ线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/mTw4777K
0
考研数学一
相关试题推荐
求幂级数的收敛域和和函数.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
已知二次型f(x1,x2,x3)=(1-a)x21+(1-a)x22+2x23+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
设f(x)=,则x2项的系数为________.
上的平均值为________.
设f(x)在[1,+∞)内可导,f’(x)<0,且=a>0.令an=-∫1nf(x)dx,证明:{an}收敛且0≤≤f(1).
设{un}为正项单调递增数列,证明收敛的充要条件是收敛.
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
设随机变量X和Y都服从标准正态分布,则
设X1,X2,…,Xn为来自总体N(μ,σ2)的简体随机样本,又为样本均值,记:
随机试题
检定的适用范围是什么?
女性,30岁,背部肿块,红、肿、疼痛3天,寒战、发热39℃。查体:背部肿物3cm×5cm,触之有波动感。当病灶做局部引流和全身应用抗生素后,仍有寒战、高热。为了提高病人血培养的阳性率,最好的抽血时间是
实行药品不良反应报告制度的主要目的有
A.马兜铃科B.大戟科C.毛茛科D.防己科E.石竹科防己原植物的科名是()。
赵先生买入了一张(100份)华夏公司5月份执行价格为100美元的看涨期权合约,期权价格为5美元,并且卖出了一张华夏公司5月份执行价格为105美元的看涨期权合约,期权价格为2美元。根据案例,回答以下问题。赵先生的策略最大损失为()美元。
()是在遵守确定的大类资产比例基础上,根据短期内各特定资产类别的表现,对投资组合中各特定资产类别的权重配置进行调整。
学校行政体系中最基层的行政组织是()
国务院常务会议由()组成。
以下叙述中正确的是
Sheboughtseveralclothesshopsandpreparedtobuildupachain.
最新回复
(
0
)