首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(ai,bi,ci)T,i=1,2,3,α=(d1,d2,d3)T,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0, 两两相交成三条平行直线的充分必要条件是( )
设αi=(ai,bi,ci)T,i=1,2,3,α=(d1,d2,d3)T,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0, 两两相交成三条平行直线的充分必要条件是( )
admin
2019-03-23
97
问题
设α
i
=(a
i
,b
i
,c
i
)
T
,i=1,2,3,α=(d
1
,d
2
,d
3
)
T
,则三个平面
a
1
x+b
1
y+c
1
z+d
1
=0,
a
2
x+b
2
y+c
2
z+d
2
=0,
a
3
x+b
3
y+c
3
z+d
3
=0,
两两相交成三条平行直线的充分必要条件是( )
选项
A、R(α
1
,α
2
,α
3
)=1,R(α
1
,α
2
,α
3
,α)=2。
B、R(α
1
,α
2
,α
3
)=2,R(α
1
,α
2
,α
3
,α)=3。
C、α
1
,α
2
,α
3
中任意两个均线性无关,且α不能由α
1
,α
2
,α
3
线性表示。
D、α
1
,α
2
,α
3
线性相关,且α不能由α
1
,α
2
,α
3
线性表示。
答案
C
解析
A项中由R(α
1
,α
2
,α
3
)=1知三个平面的法向量平行,从而三个平面相互平行(或重合),又由R(α
1
,α
2
,α
3
,α)=2,可知三个平面没有公共交点,因而这三个平面两两平行,至多有两个重合。
当三个平面两两相交成三条平行直线时,必有R(α
1
,α
2
,α
3
)=2,R(α
1
,α
2
,α
3
,α)=3,但当R(α
1
,α
2
,α
3
)=2,R(α
1
,α
2
,α
3
,α)=3时,有可能其中两个平面平行,第3个平面和它们相交,所以B项是必要不充分条件。
而D项
A项或B项,亦知D项是必要不充分条件。
α
1
,α
2
,α
3
中任意两个均线性无关
任何两个平面都不平行,且相交成一条直线,而α不能由α
1
,α
2
,α
3
线性表示
三个平面没有公共点。故选C。
转载请注明原文地址:https://kaotiyun.com/show/mXV4777K
0
考研数学二
相关试题推荐
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
下列矩阵中不能相似对角化的是
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
求线性方程组的通解,并求满足条件x12=x22的所有解.
已知齐次方程组同解,求a,b,c.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设函数f(x,y)=讨论f(x,y)在(0,0)点的可微性.
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序,将I=f(x,y)dxdy化成累次积分.
位于上半平面向上凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与的乘积成正比,求该曲线方程.
随机试题
肺痨的治疗原则是
女性,60岁,不慎跌倒右肩部着地,感局部疼痛,不能活动,即送骨科急诊,检查发现右侧肩畸形,右乎不能搭于对侧肩峰常规检查应是()
可通过输血传播的疾病是
疑似败血症患者,在血平板上长出带α溶血环的灰色小菌落,染色镜检为G+链球菌,胆汁溶解试验阳性,该细菌可能是
缩泉丸的功能是()。
需要办理竣工验收备案手续的工程有()。
由一系列相继上升的波峰和波谷形成的价格走势,称为上升趋势。()
下列说法正确的是()。
地球:北极
为了保证操作系统中文件的安全,可以采用的方法是()。
最新回复
(
0
)