首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(ai,bi,ci)T,i=1,2,3,α=(d1,d2,d3)T,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0, 两两相交成三条平行直线的充分必要条件是( )
设αi=(ai,bi,ci)T,i=1,2,3,α=(d1,d2,d3)T,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0, 两两相交成三条平行直线的充分必要条件是( )
admin
2019-03-23
69
问题
设α
i
=(a
i
,b
i
,c
i
)
T
,i=1,2,3,α=(d
1
,d
2
,d
3
)
T
,则三个平面
a
1
x+b
1
y+c
1
z+d
1
=0,
a
2
x+b
2
y+c
2
z+d
2
=0,
a
3
x+b
3
y+c
3
z+d
3
=0,
两两相交成三条平行直线的充分必要条件是( )
选项
A、R(α
1
,α
2
,α
3
)=1,R(α
1
,α
2
,α
3
,α)=2。
B、R(α
1
,α
2
,α
3
)=2,R(α
1
,α
2
,α
3
,α)=3。
C、α
1
,α
2
,α
3
中任意两个均线性无关,且α不能由α
1
,α
2
,α
3
线性表示。
D、α
1
,α
2
,α
3
线性相关,且α不能由α
1
,α
2
,α
3
线性表示。
答案
C
解析
A项中由R(α
1
,α
2
,α
3
)=1知三个平面的法向量平行,从而三个平面相互平行(或重合),又由R(α
1
,α
2
,α
3
,α)=2,可知三个平面没有公共交点,因而这三个平面两两平行,至多有两个重合。
当三个平面两两相交成三条平行直线时,必有R(α
1
,α
2
,α
3
)=2,R(α
1
,α
2
,α
3
,α)=3,但当R(α
1
,α
2
,α
3
)=2,R(α
1
,α
2
,α
3
,α)=3时,有可能其中两个平面平行,第3个平面和它们相交,所以B项是必要不充分条件。
而D项
A项或B项,亦知D项是必要不充分条件。
α
1
,α
2
,α
3
中任意两个均线性无关
任何两个平面都不平行,且相交成一条直线,而α不能由α
1
,α
2
,α
3
线性表示
三个平面没有公共点。故选C。
转载请注明原文地址:https://kaotiyun.com/show/mXV4777K
0
考研数学二
相关试题推荐
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
判断下列函数的单调性:
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
给定曲线y=χ2+5χ+4,(Ⅰ)确定b的值,使直线y=-χ+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
随机试题
公司确保正常生产经营的基础上,还期望有一些回报率较高的投资机会的需求是()
白矾的功效是硼砂的功效是
任脉循行未至以下何处
以下属于套利种类的有( )。
基金年度报告披露的主要内容包括()。
下列有关现金周转期表述正确的是()。
浪漫主义歌剧的创立者是()。
设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵,若AB=E.证明:B的列向量组线性无关.
LookAfterYourVoiceOftenspeakersatameetingexperiencedrymouthsandaskforaglassofwater.Youcansolvetheprob
HowtowritecontactdetailsinyourCV? Printyournameinlargelettersatthetopofthepage.Youdon’thavetowrite
最新回复
(
0
)