首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T αn-r=(An1,…,Ann
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T αn-r=(An1,…,Ann
admin
2018-07-27
53
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
2
=(A
r+2,1
,…,A
r+2,n
)
T
α
n-r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
r(B)=r,[*]方程组Bx=0的基础解系含n-r个向量,故只要证明α
1
,α
2
,…,α
n-r
是方程组Bx=0的线性无关解向量即可.首先,由行列式的性质,有[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,r+2,…,n).故α
1
,α
2
,…,α
n-r
都是Bx=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0.知A
*
的列向量组线性无关,而α
1
,α
2
,…,α
n-r
正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bx=0的n-r个线性无关解向量,从而可作为Bx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/mXW4777K
0
考研数学三
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A是n阶矩阵,Am=0,证明E-A可逆.
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
求微分方程的特解.
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足f(0)=0及0≤f(x)≤ex-1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设D是位于曲线下方,x轴上方的无界区域.(Ⅰ)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
随机试题
[2014]ABC会计师事务所的A注册会计师担任多家被审计单位2013年度财务报表审计的项目合伙人,遇到下列事项:(3)丙公司大部分采购和销售交易为关联方交易,管理层在2013年度财务报表附注中披露关联方交易价格公允,由于缺乏公开市场数据,A注册
边缘层
A.肝经B.肾经C.脾经D.心经
阿米巴痢疾肠道溃疡的特点是
可以有效防止不宜晾的中药的生虫、发霉的低温贮存温度是()
下列各项中,不属于比较优势原则应用的有()。
下列改革措施中,不属于北魏孝文帝时期的是
视图是【】的表,其内容是根据查询定义的。
Youwillhearfivedifferentbusinesspeopletalkingaboutcorporations.Foreachextracttherearetwotasks.ForTaskOne,cho
Whenyoucallthepolice,thepolicedispatcherhastolocatethecarnearestyouthatisfreetorespond.Thismeansthedispat
最新回复
(
0
)