首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T αn-r=(An1,…,Ann
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T αn-r=(An1,…,Ann
admin
2018-07-27
66
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
2
=(A
r+2,1
,…,A
r+2,n
)
T
α
n-r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
r(B)=r,[*]方程组Bx=0的基础解系含n-r个向量,故只要证明α
1
,α
2
,…,α
n-r
是方程组Bx=0的线性无关解向量即可.首先,由行列式的性质,有[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,r+2,…,n).故α
1
,α
2
,…,α
n-r
都是Bx=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0.知A
*
的列向量组线性无关,而α
1
,α
2
,…,α
n-r
正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bx=0的n-r个线性无关解向量,从而可作为Bx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/mXW4777K
0
考研数学三
相关试题推荐
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
求下列微分方程的通解或特解:
证明n维列向量α1,α2,…,αn线性无关的充要条件是
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
若β=(1,2,t)T可由α1=(2,1,1)T,α2=(-1,2,7)T,α3=(1,-1,-4)T线性表出,则t=_______.
设A是n阶反对称矩阵,x是n维列向量,如Ax=Y,证明x与y正交.
设4阶矩阵A的秩为2,则r(A*)=_____.
设D是位于曲线下方,x轴上方的无界区域.(Ⅰ)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
随机试题
过原点的抛物线y=ax2及y=0,x=1所围图形绕x轴旋转一周的体积为,求此抛物线方程.
结核病具有诊断意义的病理改变是
有一左卵巢囊肿病人住院等待手术期间,某晚在大便后突然左下腹持续疼痛,随后肿块逐渐增大
A.利福平B.阿托品C.卡替洛尔D.利巴韦林E.左氧氟沙星可用于治疗单纯疱疹病毒性角膜炎的药物是
某黄土场地在施工灰土垫层中,分层检测灰土压实系数,关于环刀取样位置应为()。
纳税人进口货物,应当自海关填发进口增值税专用缴款书之日起7日内缴纳税款。()
国债的发行机关是()。
固定资产和在建工程审计工作底稿及其他相关审计工作底稿中有以下的审计结论,其中不正确的是()。
劳动合同终止是指劳动合同关系消灭,即劳动关系双方权利义务的失效,()属于劳动合同自然终止。
甲公交公司的司机乙为避让闯红灯的行人丙而急刹车,致乘客丁摔倒受重伤。丁的损害应由()(2018年非法学基础课单选第30题,2018年法学基础课单选第20题)
最新回复
(
0
)