首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T αn-r=(An1,…,Ann
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T αn-r=(An1,…,Ann
admin
2018-07-27
34
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
2
=(A
r+2,1
,…,A
r+2,n
)
T
α
n-r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
r(B)=r,[*]方程组Bx=0的基础解系含n-r个向量,故只要证明α
1
,α
2
,…,α
n-r
是方程组Bx=0的线性无关解向量即可.首先,由行列式的性质,有[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,r+2,…,n).故α
1
,α
2
,…,α
n-r
都是Bx=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0.知A
*
的列向量组线性无关,而α
1
,α
2
,…,α
n-r
正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bx=0的n-r个线性无关解向量,从而可作为Bx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/mXW4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,Am=0,证明E-A可逆.
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
求微分方程y’’+4y’+5y=8cosx的当x→-∞时为有界函数的特解.
求y’’+4y’+4y=eax的通解,其中a为常数.
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足f(0)=0及0≤f(x)≤ex-1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于
求微分方程y’’+2y’-3y=ex+x的通解.
求微分方程(x-4)y4dx-x3(y2-3)dy=0的通解.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
随机试题
()的方法比较适合于对人力资源需求长期趋势的预测。
服务技能可以分为()。
涉及被调查者基本状况、客观行为等问题,如年龄、性别、教育程度等内容,均属于调查问卷中的()。
以下对于心理健康理解错误的是()。
由于机会成本并不是实际支出,没有反映在会计账目上,因此被称为_______成本。
在参加“第三次国际数学和科学”的40个国家中,美国的数学排名是第28位,英格兰的排名是第25位,苏格兰是第29位,东亚最富的4个国家和地区(新加坡、韩国、日本、香港)在数学方面居前4名,但美国儿童教育经费是韩国的3倍。捷克、斯洛伐克、斯洛文尼亚的成绩明显比
急性视网膜坏死综合征是由疱疹病毒引起的眼部炎症综合征。急性视网膜坏死综合征患者大多临床表现反复出现,相关的症状体征时有时无,药物治疗效果不佳。这说明,此病是无法治愈的。上述论证假设反复出现急性视网膜坏死综合征症状体征的患者
(2012年单选21)下列关于全国人民代表大会代表权利的表述,正确的是()。
以下行为不属于权利人对其所有的标的物进行法律上的处分的是()
下列叙述中正确的是
最新回复
(
0
)