首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2018-05-17
71
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
…+α
n
.
(1)证明方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以r([*])=n-1. 即r(A)=r([*])=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0, 即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/mgk4777K
0
考研数学二
相关试题推荐
设
=_________.
求极限
设3阶方阵A=(a,11,r2),B=(β,r1,r2),其中a,β,r1,r2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=_________.
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT.求:(Ⅰ)A2;(Ⅱ)矩阵A的特征值和特征向量.
设矩阵A=已知线性方程组AX=β有解但不唯一,试求(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
(2011年试题,一)设则I,J,K的大小关系是().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
计算sinχ2cosy2dχdy,其中D:χ2+y2≤a2(χ≥0,y≥0).
随机试题
在SDH微波中继通信系统中,没有上、下话路功能的站是()。
系统软件的核心是()。
从一般原则上讲,影响每股盈余指标高低的因素有()。
一个行业在()会面临非常大的竞争压力。
企业转销确实无法支付的应付账款应记入()科目。
下列当事人可以到法院进行行政诉讼的是()。
设窗体上有一个水平滚动条HScroll1和一个命令按钮Command1,及下面的事件过程:PrivateSubForm_Load()HScroll1.Min=0HScroll1.Max=100EndSub
设二叉树中共有15个节点,其中的节点值互不相同。如果该二叉树的前序序列与中序序列相同,则该二叉树的深度为()。
【S1】【S10】
A、 B、 C、 A询问侄女是否会拜访,回答Yes并告知了具体日期的(A)为正确选项。(B)是就Where提问时的回答。问题中如果只听到thissummer,则很可能选择包含hotter,August等相关信息的(C)
最新回复
(
0
)