首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设l为平面曲线y=x2从点O(0,0)到点A(1,1)的有向弧,则平面第二型曲线积分∫lyey2dx+(xey2+2xy2ey2)dy=______.
设l为平面曲线y=x2从点O(0,0)到点A(1,1)的有向弧,则平面第二型曲线积分∫lyey2dx+(xey2+2xy2ey2)dy=______.
admin
2018-09-25
42
问题
设l为平面曲线y=x
2
从点O(0,0)到点A(1,1)的有向弧,则平面第二型曲线积分∫
l
ye
y
2
dx+(xe
y
2
+2xy
2
e
y
2
)dy=______.
选项
答案
e
解析
令P(x,y)=ye
y
2
,Q(x,y)=xe
y
2
+2xy
2
e
y
2
,有
曲线积分与路径无关.
方法一 改取路径y=x.
∫
l
ye
y
2
dx+(xe
y
2
+2xy
2
e
y
2
)dy=∫
0
1
(xe
x
2
+xe
x
2
+2x
3
e
x
2
)dx
=∫
0
1
1(2xe
x
2
+2x
3
e
x
2
)dx=(e
x
2
+x
2
e
x
2
-e
x
2
)|
0
1
=e.
方法二 用原函数法.
ye
y
2
x+(xe
y
2
+2xy
2
e
y
2
)dy=e
y
2
(ydx+xdy)+xyde
y
2
=d(xye
y
2
).
∫
l
ye
y
2
dx+(xe
y
2
+2xy
2
e
y
2
)dy=∫
l
d(xye
y
2
)=xye
y
2
|∫
(0,0)
(1,1)
=e.
转载请注明原文地址:https://kaotiyun.com/show/mig4777K
0
考研数学一
相关试题推荐
(Ⅰ)设f(x)在[x0,x0+δ)(x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又=A(=A),求证:f′+(x0)=A(f′-(x0)=A).(Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}
设f(x)=nx(1-x)n(n为自然数),(Ⅰ)求f(x);(Ⅱ)求证:f(x)<.
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf′(x)=f(x)+ax2,又由曲线y=f(x)与直线=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
求齐次方程组的基础解系.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
求下列三重积分:(Ⅰ)I=(x2+y2)dV,其中Ω由z=16(x2+y2),z=4(x2+y2),z=16围成;(Ⅱ)I=dV,其中Ω由x2+y2+z2≤2z所确定;(Ⅲ)I=xyzdV,其中Ω:x2+y2+z2≤1位于第一卦限的部分.
确定常数a和b的值,使f(x)=x-(a+6ex2)sinx当x→0时是x的5阶无穷小量.
求解下列方程:(Ⅰ)求方程xy″=y′lny′的通解;(Ⅱ)求yy″=2(y′2-y′)满足初始条件y(0)=1,y′(0)=2的特解.
设二重积分I=(x2+y2)dxdy,其中D是由曲线x2+y2=2x所围第一象限的平面区域,则I=___________.
随机试题
教育起源于儿童对成人的无意识模仿。
中、重度营养不良治疗不恰当的是
预防肺结核最关键、最有效的措施是
以下行为无效的是()
f(x)在点x0处的左、右极限存在且相等是f(x)在点x0处连续的()。
根据《防治海洋工程建设项目污染损害海洋环境管理条例》,关于海洋工程污染物排放管理的规定,下列说法中,正确的是()。
一般墙体大模板在常温条件下,混凝土强度达到()N/mm2.I可拆除。
下列不属于加涅学习水平分类中的学习类型的是()
下列叙述中,正确的是()。
33.Myfatherisn’t__________asheWaslastWeek.
最新回复
(
0
)