首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设A=,E为3阶单位矩阵. (I)求方程组AX=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
[2014年] 设A=,E为3阶单位矩阵. (I)求方程组AX=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
admin
2019-05-10
56
问题
[2014年] 设A=
,E为3阶单位矩阵.
(I)求方程组AX=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
选项
答案
对(I),只需将A化为含最高阶单位矩阵的矩阵,由基础解系的简便求法(参阅《考研数学常考题型解题方法技巧归纳(数学二)》2.4.4节)即可写出一个基础解系.对(Ⅱ),因A为不可逆矩阵,求解矩阵方程AB=E,常用待定元素法求之,即设出待求矩阵B中元素B=(x
ij
)
4×3
=(X
1
,X
2
,X
3
),转化为求解矩阵方程AX
i
=b
i
(i=1,2,3). (Ⅰ)为求AX=0的一个基础解系,只需用初等行变换将A化为含最高阶单位矩阵的矩阵:[*] 由基础解系的简化求法即可得到AX=0的一个基础解系只含一个解向量α,且 α=[一1,2,3,1]
T
. (Ⅱ)因A不可逆,需用待定元素法求出满足AB=E的所有矩阵,由AB=E,A为3×4矩阵,E为3×3矩阵,则B必为4×3矩阵,设其元素为x
ij
,由B=(x
ij
)
4×3
得到 [*] 因而得到下述三个线性方程组: [*] 对上述三个方程组的增广矩阵用初等行变换化为含最高阶单位矩阵的矩阵: [*] 由基础解系和特解的简便求法(参阅《考研数学常考题型解题方法技巧归纳(数学二)》2.4.4节),即得方程组①的一个特解及对应的齐次线性方程组的一个基础解系分别为: η
1
=[2,一1,一1,0]
T
,α
1
=[一1,2,3,1]
T
于是该方程组的通解为 X
1
=[x
11
,x
21
,x
31
,x
41
]
T
=Y
1
+η
1
=k
1
α
1
+η
1
=[一k
1
+2,2k
1
—1,3k
1
—1,k
1
]
T
. 同样由[*]可得方程组②的通解为 X
2
=[x
12
,x
22
,x
32
,x
42
]
T
=Y
2
+η
2
=k
2
α
2
+η
2
=k
2
[-1,2,3,1]
T
+[6,一3,一4,0]
T
=[一k
2
+6,2k
2
一3,3k
2
-4,k
2
]
T
. 由[*]可得方程组③的通解为 X
3
=[x
13
,x
23
,x
33
,x
43
]
T
=Y
3
+η
3
=k
3
α
3
+η
3
. =k
3
[1,2,3,1]
T
+[-1,1,l,0]
T
=[一k
3
-1,2k
3
+l,3k
3
+1,k
3
]
T
. 综上得到, B=[X
1
,X
2
,X
3
]=[*](k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/mjV4777K
0
考研数学二
相关试题推荐
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设f(χ)在χ=a处二阶可导,证明=f〞(a).
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设A为n阶矩阵,A2=A,则下列成立的是().
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设A=,计算行列式|A|.
随机试题
我国在涉外所得税法中采取的税收管辖原则有
A、 B、 C、 D、 A
微分方程y″+y=0满足,的解是________。
称为隐性肺动脉高压时,运动时的肺动脉平均压(PAPm)应大于
僵蚕的功效是()。
课程资源按其功能特点区分,可以分为()
息票债券,在每一次付息时,债券价格会下降()。
(2017年真题)《中华人民共和国民法通则》第93条规定:“没有法定的或者约定的义务,为避免他人利益受损失进行管理或者服务的,有权要求受益人偿付由此而支付的必要费用。”请分析:本条规定的债的发生原因有哪些构成条件?
GoingonaDietAtypicalpersonneedsabout1,800caloriesperdaytostayalive.Thesecalorieskeepyourheart【C1】______
Questions23-28•ReadthenewspaperarticlebelowaboutJapaneseinvestment.•Foreachquestion(23-28),choosethecorr
最新回复
(
0
)