首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αn是n维向量组,证明α1,α2……αn线性无关的充分必要条件是任何一个n维向量都可被它们线性表示.
设α1,α2……αn是n维向量组,证明α1,α2……αn线性无关的充分必要条件是任何一个n维向量都可被它们线性表示.
admin
2016-01-11
138
问题
设α
1
,α
2
……α
n
是n维向量组,证明α
1
,α
2
……α
n
线性无关的充分必要条件是任何一个n维向量都可被它们线性表示.
选项
答案
必要性:由于n维的向量组α
1
,α
2
……α
n
线性无关,则对于任意一个n维向量β,则α
1
,α
2
……α
n
,β必线性相关,从而存在不全为零的数k
1
,k
2
,…,k
n
,λ,使得k
1
α
1
+k
2
α
2
+…+k
n
α
n
+λβ=0. 若λ=0,则k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,由α
1
,α
2
,…,α
n
线性无关得k
1
=k
2
=…=k
n
=0,这与k
1
,k
2
,…,k
n
,λ不全为零矛盾,从而λ≠0,于是[*] 充分性:由于任意一个n维向量都可由α
1
,α
2
……α
n
线性表示,特别地取n维基本向量组e
1
,e
2
,…,e
n
,则e
1
,e
2
,…,e
n
能由α
1
,α
2
……α
n
线性表示. 即(e
1
,e
2
……e
n
)=(α
1
,α
2
……α
n
)K,其中K是n×n矩阵.两边取行列式. |(α
1
,α
2
……α
n
)||K|=|e
1
,e
2
……e
n
|=1≠0,从而|α
1
,α
2
……α
n
|≠0,从而α
1
,α
2
……α
n
,线性无关.
解析
本题考查向量组线性相关性的概念和线性表示的概念及向量组线性相关性的判定.要求考生掌握n个n维向量线性无关的充分必要条件是由它们排成的n阶行列式不为零.
转载请注明原文地址:https://kaotiyun.com/show/mq34777K
0
考研数学二
相关试题推荐
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
下列广义积分收敛的是()
3
设f(x)在x=0处具有二阶连续导数,且已知,试求f(0),f'(0),f"(0)及极限。
当x→0时,无穷小的阶数最高的是().
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求a,b,c的值;
设D={(x,y)∣1≤x2+y2≤2x,y≥0),计算积分
设X,Y)9两个随机变量,其中E(X)=2,E(y)=一1,D(X)=9,D(Y)=16,且X,Y的相关系数为,由切比雪夫不等式得P{|X+Y一1|≤10}≥().
函数f(x)[a,b]上的连续函数,区域D={(x,y)|a≤x≤b,a≤y≤b},证明:ef(x)-f(y)dσ≥(b-a)2.
随机试题
设二维随机变量(X,Y的分布函数为F(x,y),其边缘分布函数为FX(x)、FY(y),且对某一组x1、y1有F(x1,y1)=FX(x1)。FY(y1),则下列结论正确的是()
[*]
医院外源性感染由哪些因素所致?
胰头癌与壶腹癌的鉴别要点是
有关胶囊剂的叙述,错误的是
长期使用解热药或激素类药后,常出现的热型是
路线价估价法特别适用于()的估价。
对演播室的声学处理应满足()要求。
关于DNA聚合酶作用的叙述有
生长因子受体的细胞外结构域(N端)结合生长因子,跨膜区由单一α螺旋组成,而其细胞内结构域(C端)具有的酶促活性是
最新回复
(
0
)