首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=为A的特征向量. (1)求a,b及A的所有特征值与特征向量; (2)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=为A的特征向量. (1)求a,b及A的所有特征值与特征向量; (2)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2019-08-28
41
问题
设A=
为A的特征向量.
(1)求a,b及A的所有特征值与特征向量;
(2)A可否对角化?若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)由Aα=λα得 [*] 解得a=1,b=1,λ=3. 由|λE-A|=[*]=λ(λ-2)(λ-3)=0得λ
1
=0,λ
2
=2,λ
3
=3. (2)因为A的特征值都是单值,所以A可相似对角化. 将λ
1
=0代A(AE-A)X=0得λ
1
=0对应的线性无关特征向量为α
1
=[*] 将λ
2
=2代入(AE-A)X=0得λ
2
=2对应的线性无关特征向量为α
2
=[*] 将λ
3
=3代入(λE-A)X=0得λ
3
=3对应的线性无关特征向量为α
3
=[*] 令P=[*],则P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/mqJ4777K
0
考研数学三
相关试题推荐
已知(X,Y)的概率分布为(Ⅰ)求Z=X—Y的概率分布;(Ⅱ)记U1=XY,V1=,求(U1,V1)的概率分布;(Ⅲ)记U2=max(X,Y),V2=min(X,Y),求(U2,V2)的概率分布及U2V2的概率分布.
一辆汽车沿一街道行驶,要过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红、绿两种信号显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口的个数,求X的概率分布.
设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.(Ⅰ)求Y的概率分布;(Ⅱ)求EY.
设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_______.
(1990年)某公司通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2—8x1x2—2x12一1022;1
设函数y=y(x)由参数方程
求微分方程的通解.
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4))T,β=(1,b,c)T.试问:当a,b,c满足什么条件时(1)β可由α1,α2,α3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
随机试题
简述室上性心动过速的治疗。
关于分级监护叙述正确的是
以下各种血液疾病,哪种是不能达到临床治愈的
蒲黄、旋覆花等药入煎剂宜
[2006年,第67题]空心圆轴和实心圆轴的外径相同时,截面的扭转截面系数较大的是()。
关于广义质量概念与狭义质量概念的对比,说法不正确的是()。
高等教育目的是衡量和评价高等教育实施效果的根本依据和标准。()
某省旅游业较为发达,据统计,该省2014.年lm2月份接待入境游客45.9万人次,旅游外汇收入2亿美元,同比分别增长11.8%和10.9%,增幅分别比上年同期回落4.7个和16.9个百分点。接待港澳台游客20.7万人次,增长6.5%,增幅比上年
一项任务的最早开始时间是第3天,最晚开始时间是第13天,最早完成时间是第9天,最晚完成时间是第19天。该任务______。A.在关键路径上B.有滞后C.进展情况良好D.不在关键路径上
A、JapanesestudentsstudymuchharderthanColumbianstudents.B、ColumbianstudentsscorehigherthanJapanesestudentsinmaths
最新回复
(
0
)