首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2017-05-31
41
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
-∫
0
1
f
3
(x)dx>0.考察F(x)=[∫
0
x
f(t)dt]
2
-∫
0
x
f
3
(t)dt,若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
x
f(t)dt]
2
-∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt-f
2
(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt-f
2
(x)同号.再考察 g’(x)=2f(x)[1-f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
-∫
0
1
f
3
(x)dx>0. 即结论成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/mut4777K
0
考研数学二
相关试题推荐
求微分方程y"-12y’+35y=0的通解。
设函数f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫0f(x)g(t)dt=x2ex,求f(x).
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=________.
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
考察下列函数的极限是否存在.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f(x)单调减少;且f(1)=f’(1)=1,则
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=B的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设函数f(x)在(-∞,+∞)内有定义,xo≠0是函数f(x)的极大值点,则().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
随机试题
预防和早期发现内膜癌的措施不包括()
本病例最可能的诊断为下列急救措施不妥当的是
患者脘腹痞满疼痛,下痢赤白,里急后重,舌苔黄腻,脉沉实。治疗应选用
在下列常用的市场预测方法中,仅适用于短期预测范围内的方法是()。
针对旅游活动出现的新趋势,导游服务必须有新的改观,以适应未来旅游业发展的需要,未来旅游活动发展趋势是()。
下列哪些选项属于我国在政府体制内的家庭社会工作?( )
以下哪句是没有语病的?()
“谈梅生津”属于______反射。(2014.湖北)
材料一:2016年春节期间,媒体上、公众间对于年味变淡的讨论似乎少了许多。由于互联网对人们日常生活的持续影响与渗透,人们似乎已渐渐接受互联网对传统春节的影响与改变。办年货,不再去市场、实体商店,而是通过网购完成;写春联,也不再自己绞尽脑汁想了,而
在关系数据库设计中,关系模式设计属于
最新回复
(
0
)