首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组有非零解,且是正定矩阵. 求xTx=1,xTAx的最大值和最小值.
已知齐次线性方程组有非零解,且是正定矩阵. 求xTx=1,xTAx的最大值和最小值.
admin
2016-01-11
65
问题
已知齐次线性方程组
有非零解,且
是正定矩阵.
求x
T
x=1,x
T
Ax的最大值和最小值.
选项
答案
当a=3时,由[*]得A的特征值为1,4,10. 由于a=3时,A为实对称矩阵,故存在正交矩阵P,经正交变换x=Py化二次型x
T
Ax为标准形,从而1=y
1
2
+y
2
2
+y
3
2
≤x
T
Ax=y
1
2
+4y
2
2
+10y
3
2
≤10(y
1
2
+y
2
2
+y
3
2
)=10,故x
T
Ax的最大值为10,最小值为1.
解析
本题考查二次型的综合题.通过方程组有解和A正定确定参数a,将二次型f=x
T
Ax化成标准形.再求‖x‖=1下的极值.
转载请注明原文地址:https://kaotiyun.com/show/mv34777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设A=且存在三阶非零矩阵B,使得AB=O,则α=________,b=________.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:(1)AB=BA:(2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值;(2)判断A可否对角化.
设A=相似于对角矩阵.求:(1)a及可逆矩阵P,使得P-1AP=A,其中A为对角矩阵;(2)A100.
f=(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=0,该二次型的规范形为________.
设随机变量X1,X2,X3,X4互独立且都服从标准正态分布N(0,1),已知,对给定的α(0<α<1),数yα满足P{Y>ya}=α,则有
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
随机试题
《望星空》是为1959年人民大会堂的落成而作的诗歌,其作者是()
A.头B.足C.手D.背E.胸腹手三阴经与手三阳经相交于
焦四仙是焦三仙中加上
某省政府向社会公布了政府在行政审批领域中的权力清单。关于该举措,下列哪一说法是错误的?
下列哪一措施有助于完善确保依法独立公正行使审判权和检察权?()
协会应当自对期货从业人员做出纪律惩戒决定之日起( )个工作日内,向中国证监会及其有关派出机构报告。
谨慎性不允许企业()。
下列各项中,符合我国个人所得税法规定的是()。
某居民企业2018年度境内应纳税所得额为800万元;设立在甲国的分公司就其境外所得在甲国已纳企业所得税40万元,甲国企业所得税税率为20%。该居民企业2018年度企业所得税应纳税所得额是()万元。
茶文化在我国有悠久的历史,茶叶因生长环境的差异而带有不同的味道,一些人根据多年的经验给自己所品尝的茶以特殊的名字,以来显示它的独特之处,“东方美人”是台湾苗粟出产的一种名茶,它由当地客家人种植,是被小绿叶蝉咬过的乌龙茶叶。很久以前,英国女王偶尔品尝到此茶,
最新回复
(
0
)