首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. (Ⅰ)求二次型xTAx的规范形. (Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. (Ⅰ)求二次型xTAx的规范形. (Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
admin
2017-11-23
60
问题
设A为n阶实对称矩阵,满足A
2
=E,并且r(A+E)=k<n.
(Ⅰ)求二次型x
T
Ax的规范形.
(Ⅱ)证明B=E+A+A
2
+A
3
+A
4
是正定矩阵,并求|B|.
选项
答案
①由于A
2
=E,A的特征值λ应满足λ
2
=1,即只能是1和一1.于是A+E的特征值 只能是2和0.A+E也为实对称矩阵,它相似于对角矩阵Λ,Λ的秩等于r(A+E)=k.于是A+E的特征值是2(后重)和0(n—k重),从而A的特征值是1(k重)和一1(n一k重).A的正, 负关系惯性指数分别为k和n一k,x
T
Ax的规范形为 y
1
2
+y
2
2
+…+y
k
2
一y
k+1
2
一…一y
n
2
. ②B是实对称矩阵.由A
2
=E,有B=3E+2A,B的特征值为5(k重)和1(1一k重)都是正数.因此B是正定矩阵. |B|=5
k
.
解析
转载请注明原文地址:https://kaotiyun.com/show/myr4777K
0
考研数学一
相关试题推荐
设函数f(x,y)可微,又f(0,0)=0,fx’(0,0)=a,fy’(0,0)=b,且φ(t)=f(t,t2)],求φ’(0).
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,计算PQ;
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg·s2/m2),在垂直方向的比例系数为ky(kg·s2/m2).设飞机的质量
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解:
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
设总体服从U[0,θ],X1,X2,…,Xn为总体的样本.证明:为θ的一致估计.
已知f(x)在x=0某邻域内连续,且f(0)=0,=2,则在点x=0处f(x)
随机试题
血清与血浆的重要不同点是前者不含()
固体分散体均可以促进药物溶出。()
()是指对工程造成特大经济损失或延误较长工期,经处理后仍对正常使用和工程使用寿命有较大影响的事故。
账务处理系统中,当月结账后可以输入()的凭证。
经济学家根据一个周期的长短将经济周期分为( )。
某省的生物中考满分为100分,某同学得了55分,最终成绩单上给出的成绩是“B”。这样的考试属于()。①纸笔测验②终结性评价③标准参照型考试④常模参照型考试
下列不属于科研对教师的影响的是()。
下列我国古代杰出医学家中,被后人誉为“脉学之宗”的是:
在下列枚举符号中,用来定位文件开始位置的方式是
Ifitweretwohourslater,itwouldbehalfaslonguntilmidnightasitwouldbeifitwereanhourlater.Whattimeisitnow
最新回复
(
0
)