首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. (Ⅰ)求二次型xTAx的规范形. (Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. (Ⅰ)求二次型xTAx的规范形. (Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
admin
2017-11-23
42
问题
设A为n阶实对称矩阵,满足A
2
=E,并且r(A+E)=k<n.
(Ⅰ)求二次型x
T
Ax的规范形.
(Ⅱ)证明B=E+A+A
2
+A
3
+A
4
是正定矩阵,并求|B|.
选项
答案
①由于A
2
=E,A的特征值λ应满足λ
2
=1,即只能是1和一1.于是A+E的特征值 只能是2和0.A+E也为实对称矩阵,它相似于对角矩阵Λ,Λ的秩等于r(A+E)=k.于是A+E的特征值是2(后重)和0(n—k重),从而A的特征值是1(k重)和一1(n一k重).A的正, 负关系惯性指数分别为k和n一k,x
T
Ax的规范形为 y
1
2
+y
2
2
+…+y
k
2
一y
k+1
2
一…一y
n
2
. ②B是实对称矩阵.由A
2
=E,有B=3E+2A,B的特征值为5(k重)和1(1一k重)都是正数.因此B是正定矩阵. |B|=5
k
.
解析
转载请注明原文地址:https://kaotiyun.com/show/myr4777K
0
考研数学一
相关试题推荐
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设其中f,g均可微,求
求幂级数的和函数.在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
设f(x)连续,f(0)=1,f’(0)=2.下列曲线与曲线y=f(x)必有公共切线的是()
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
求矢量穿过曲面∑的通量,其中三为曲线绕z轴旋转一周所形成旋转曲面的外侧在1≤z≤2间部分.
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足;的微分方程及初始条件;
设某产品的指标服从正态分布,它的标准差为σ=100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平α=0.05下,能否认为这批产品的指标的期望值μ不低于1600.
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,-2]T,则()。
随机试题
A.前路开眶术经皮肤切口B.前路开眶术经结膜切口C.前路开眶术外眦切开,可经下穹窿结膜切口D.Stallard切口E.Berke切口
某女,左委中穴处木硬肿痛,小腿屈伸困难,行动不利,身热纳呆,脉濡数,治疗宜选
我国统计调查制度由()组成。
项目可行性研究中的初步可行性研究工作的性质是________。
新中国成立后,中国共产党把独立自主、自力更生运用到外交领域和经济建设方面,形成的方针、政策是:
养痈:成患
我国最早的地理学著作《禹贡》,实际上产生于战国后期,但对历史地理现象的注意和记录在更早的著作中已可找到例证。成书于公元1世纪的《汉书.地理志》既是一篇内容丰富的当代地理著作,也堪称中国第一篇历史地理著作,因为它所记述的对象不限于西汉一朝,而是“采获旧闻,考
[A]Convincingevidence;USislosingitsappealintheeyesofmultinationals[B]Biggesthindrance:USdividedpoliticalsystem
在VisualFoxPro中,查询设计器和视图设计器很像,如下描述正确的是
有以下程序#include<stdio.h>#include<string.h>structS{charname[10];};voidchange(structS*data,intvalue){
最新回复
(
0
)